------------------------------------------------------------------------
-- The Agda standard library
--
-- Maybe-related properties
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

module Data.Maybe.Properties where

open import Algebra
import Algebra.Structures as Structures
import Algebra.FunctionProperties as FunctionProperties
open import Data.Maybe.Base
open import Data.Maybe.Relation.Unary.All using (All; just; nothing)
open import Data.Product using (_,_)
open import Function
open import Relation.Binary using (Decidable)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (yes; no)

------------------------------------------------------------------------
-- Equality

module _ {a} {A : Set a} where

  just-injective :  {x y}  (Maybe A  just x)  just y  x  y
  just-injective refl = refl

  ≡-dec : Decidable _≡_  Decidable {A = Maybe A} _≡_
  ≡-dec _≟_ nothing  nothing  = yes refl
  ≡-dec _≟_ (just x) nothing  = no λ()
  ≡-dec _≟_ nothing  (just y) = no λ()
  ≡-dec _≟_ (just x) (just y) with x  y
  ... | yes refl = yes refl
  ... | no  x≢y  = no (x≢y  just-injective)

------------------------------------------------------------------------
-- map

  map-id : map id  id {A = Maybe A}
  map-id (just x) = refl
  map-id nothing  = refl

  map-id₂ :  {f : A  A} {mx}  All  x  f x  x) mx  map f mx  mx
  map-id₂ (just eq) = cong just eq
  map-id₂ nothing   = refl

module _ {a b} {A : Set a} {B : Set b} where

  map-<∣>-commute :  (f : A  B) mx my 
    map f (mx <∣> my)  map f mx <∣> map f my
  map-<∣>-commute f (just x) my = refl
  map-<∣>-commute f nothing  my = refl

  map-cong : {f g : A  B}  f  g  map f  map g
  map-cong f≗g (just x) = cong just (f≗g x)
  map-cong f≗g nothing  = refl

  map-cong₂ :  {f g : A  B} {mx} 
    All  x  f x  g x) mx  map f mx  map g mx
  map-cong₂ (just eq) = cong just eq
  map-cong₂ nothing   = refl

module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where

  map-compose : {g : B  C} {f : A  B}  map (g  f)  map g  map f
  map-compose (just x) = refl
  map-compose nothing  = refl

------------------------------------------------------------------------
-- maybe

module _ {a b} {A : Set a} {B : Set b} where

  maybe-map :  {c} {C : Maybe B  Set c}
              (j : (x : B)  C (just x)) (n : C nothing) (f : A  B) ma 
              maybe {B = C} j n (map f ma)  maybe {B = C  map f} (j  f) n ma
  maybe-map j n f (just x) = refl
  maybe-map j n f nothing  = refl

  maybe′-map :  {c} {C : Set c} j (n : C) (f : A  B) ma 
               maybe′ j n (map f ma)  maybe′ (j ∘′ f) n ma
  maybe′-map = maybe-map

------------------------------------------------------------------------
-- _<∣>_

module _ {a} {A : Set a} where

  open FunctionProperties {A = Maybe A} _≡_

  <∣>-assoc : Associative _<∣>_
  <∣>-assoc (just x) y z = refl
  <∣>-assoc nothing  y z = refl

  <∣>-identityˡ : LeftIdentity nothing _<∣>_
  <∣>-identityˡ (just x) = refl
  <∣>-identityˡ nothing  = refl

  <∣>-identityʳ : RightIdentity nothing _<∣>_
  <∣>-identityʳ (just x) = refl
  <∣>-identityʳ nothing  = refl

  <∣>-identity : Identity nothing _<∣>_
  <∣>-identity = <∣>-identityˡ , <∣>-identityʳ

module _ {a} (A : Set a) where

  open Structures {A = Maybe A} _≡_

  <∣>-isMagma : IsMagma _<∣>_
  <∣>-isMagma = record
    { isEquivalence = isEquivalence
    ; ∙-cong        = cong₂ _<∣>_
    }

  <∣>-isSemigroup : IsSemigroup _<∣>_
  <∣>-isSemigroup = record
    { isMagma = <∣>-isMagma
    ; assoc   = <∣>-assoc
    }

  <∣>-isMonoid : IsMonoid _<∣>_ nothing
  <∣>-isMonoid = record
    { isSemigroup = <∣>-isSemigroup
    ; identity    = <∣>-identity
    }

  <∣>-semigroup : Semigroup a a
  <∣>-semigroup = record
    { isSemigroup = <∣>-isSemigroup
    }

  <∣>-monoid : Monoid a a
  <∣>-monoid = record
    { isMonoid = <∣>-isMonoid
    }