------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties related to negation
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

module Relation.Nullary.Negation where

open import Category.Monad
open import Data.Bool.Base using (Bool; false; true; if_then_else_)
open import Data.Empty
open import Data.Product as Prod
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂; [_,_])
open import Function
open import Level
open import Relation.Nullary
open import Relation.Unary

contradiction :  {p w} {P : Set p} {Whatever : Set w} 
                P  ¬ P  Whatever
contradiction p ¬p = ⊥-elim (¬p p)

contraposition :  {p q} {P : Set p} {Q : Set q} 
                 (P  Q)  ¬ Q  ¬ P
contraposition f ¬q p = contradiction (f p) ¬q

-- Note also the following use of flip:

private
  note :  {p q} {P : Set p} {Q : Set q} 
         (P  ¬ Q)  Q  ¬ P
  note = flip

-- If we can decide P, then we can decide its negation.

¬? :  {p} {P : Set p}  Dec P  Dec (¬ P)
¬? (yes p) = no  ¬p  ¬p p)
¬? (no ¬p) = yes ¬p

------------------------------------------------------------------------
-- Quantifier juggling

∃⟶¬∀¬ :  {a p} {A : Set a} {P : A  Set p} 
         P  ¬ (∀ x  ¬ P x)
∃⟶¬∀¬ = flip uncurry

∀⟶¬∃¬ :  {a p} {A : Set a} {P : A  Set p} 
        (∀ x  P x)  ¬  λ x  ¬ P x
∀⟶¬∃¬ ∀xPx (x , ¬Px) = ¬Px (∀xPx x)

¬∃⟶∀¬ :  {a p} {A : Set a} {P : A  Set p} 
        ¬   x  P x)   x  ¬ P x
¬∃⟶∀¬ = curry

∀¬⟶¬∃ :  {a p} {A : Set a} {P : A  Set p} 
        (∀ x  ¬ P x)  ¬   x  P x)
∀¬⟶¬∃ = uncurry

∃¬⟶¬∀ :  {a p} {A : Set a} {P : A  Set p} 
          x  ¬ P x)  ¬ (∀ x  P x)
∃¬⟶¬∀ = flip ∀⟶¬∃¬

------------------------------------------------------------------------
-- Double-negation

¬¬-map :  {p q} {P : Set p} {Q : Set q} 
         (P  Q)  ¬ ¬ P  ¬ ¬ Q
¬¬-map f = contraposition (contraposition f)

-- Stability under double-negation.

Stable :  {}  Set   Set 
Stable P = ¬ ¬ P  P

-- Everything is stable in the double-negation monad.

stable :  {p} {P : Set p}  ¬ ¬ Stable P
stable ¬[¬¬p→p] = ¬[¬¬p→p]  ¬¬p  ⊥-elim (¬¬p (¬[¬¬p→p]  const)))

-- Negated predicates are stable.

negated-stable :  {p} {P : Set p}  Stable (¬ P)
negated-stable ¬¬¬P P = ¬¬¬P  ¬P  ¬P P)

-- Decidable predicates are stable.

decidable-stable :  {p} {P : Set p}  Dec P  Stable P
decidable-stable (yes p) ¬¬p = p
decidable-stable (no ¬p) ¬¬p = ⊥-elim (¬¬p ¬p)

¬-drop-Dec :  {p} {P : Set p}  Dec (¬ ¬ P)  Dec (¬ P)
¬-drop-Dec (yes ¬¬p) = no ¬¬p
¬-drop-Dec (no ¬¬¬p) = yes (negated-stable ¬¬¬p)

-- Double-negation is a monad (if we assume that all elements of ¬ ¬ P
-- are equal).

¬¬-Monad :  {p}  RawMonad  (P : Set p)  ¬ ¬ P)
¬¬-Monad = record
  { return = contradiction
  ; _>>=_  = λ x f  negated-stable (¬¬-map f x)
  }

¬¬-push :  {p q} {P : Set p} {Q : P  Set q} 
          ¬ ¬ ((x : P)  Q x)  (x : P)  ¬ ¬ Q x
¬¬-push ¬¬P⟶Q P ¬Q = ¬¬P⟶Q  P⟶Q  ¬Q (P⟶Q P))

-- A double-negation-translated variant of excluded middle (or: every
-- nullary relation is decidable in the double-negation monad).

excluded-middle :  {p} {P : Set p}  ¬ ¬ Dec P
excluded-middle ¬h = ¬h (no  p  ¬h (yes p)))

-- If Whatever is instantiated with ¬ ¬ something, then this function
-- is call with current continuation in the double-negation monad, or,
-- if you will, a double-negation translation of Peirce's law.
--
-- In order to prove ¬ ¬ P one can assume ¬ P and prove ⊥. However,
-- sometimes it is nice to avoid leaving the double-negation monad; in
-- that case this function can be used (with Whatever instantiated to
-- ⊥).

call/cc :  {w p} {Whatever : Set w} {P : Set p} 
          ((P  Whatever)  ¬ ¬ P)  ¬ ¬ P
call/cc hyp ¬p = hyp  p  ⊥-elim (¬p p)) ¬p

-- The "independence of premise" rule, in the double-negation monad.
-- It is assumed that the index set (Q) is inhabited.

independence-of-premise
  :  {p q r} {P : Set p} {Q : Set q} {R : Q  Set r} 
    Q  (P  Σ Q R)  ¬ ¬ (Σ[ x  Q ] (P  R x))
independence-of-premise {P = P} q f = ¬¬-map helper excluded-middle
  where
  helper : Dec P  _
  helper (yes p) = Prod.map id const (f p)
  helper (no ¬p) = (q , ⊥-elim ∘′ ¬p)

-- The independence of premise rule for binary sums.

independence-of-premise-⊎
  :  {p q r} {P : Set p} {Q : Set q} {R : Set r} 
    (P  Q  R)  ¬ ¬ ((P  Q)  (P  R))
independence-of-premise-⊎ {P = P} f = ¬¬-map helper excluded-middle
  where
  helper : Dec P  _
  helper (yes p) = Sum.map const const (f p)
  helper (no ¬p) = inj₁ (⊥-elim ∘′ ¬p)

private

  -- Note that independence-of-premise-⊎ is a consequence of
  -- independence-of-premise (for simplicity it is assumed that Q and
  -- R have the same type here):

  corollary :  {p } {P : Set p} {Q R : Set } 
              (P  Q  R)  ¬ ¬ ((P  Q)  (P  R))
  corollary {P = P} {Q} {R} f =
    ¬¬-map helper (independence-of-premise
                     true ([ _,_ true , _,_ false ] ∘′ f))
    where
    helper :   b  P  if b then Q else R)  (P  Q)  (P  R)
    helper (true  , f) = inj₁ f
    helper (false , f) = inj₂ f

-- The classical statements of excluded middle and double-negation
-- elimination.

Excluded-Middle : ( : Level)  Set (suc )
Excluded-Middle p = {P : Set p}  Dec P

Double-Negation-Elimination : ( : Level)  Set (suc )
Double-Negation-Elimination p = {P : Set p}  Stable P

private

  -- The two statements above are equivalent. The proofs are so
  -- simple, given the definitions above, that they are not exported.

  em⇒dne :  {}  Excluded-Middle   Double-Negation-Elimination 
  em⇒dne em = decidable-stable em

  dne⇒em :  {}  Double-Negation-Elimination   Excluded-Middle 
  dne⇒em dne = dne excluded-middle