{-# OPTIONS --without-K --safe #-}
open import Axiom.Extensionality.Propositional
module Mint.Semantics.Realizability (fext : ∀ {ℓ ℓ′} → Extensionality ℓ ℓ′) where
open import Data.Nat.Induction
open import Lib
open import Mint.Semantics.Domain
open import Mint.Semantics.Evaluation
open import Mint.Semantics.PER
open import Mint.Semantics.Properties.Domain fext
open import Mint.Semantics.Properties.PER.Core fext
open import Mint.Semantics.Readback
mutual
realizability-Re-Acc : ∀ {i} →
Acc (_<_) i →
(A≈A′ : A ≈ A′ ∈ 𝕌 i) →
c ≈ c′ ∈ Bot →
↑ A c ≈ ↑ A′ c′ ∈ El i A≈A′
realizability-Re-Acc <i (ne C≈C′) c≈c′ = ne c≈c′
realizability-Re-Acc <i N c≈c′ = ne c≈c′
realizability-Re-Acc <i (U j<i refl) c≈c′
rewrite 𝕌-wellfounded-≡-𝕌 _ j<i = ne c≈c′
realizability-Re-Acc {□ A} {□ A′} {c} {c′} {i} <i (□ A≈A′) c≈c′ n κ =
record
{ ua = unbox′ (A [ ins κ 1 ] [ ins vone n ]) n (c [ κ ])
; ub = unbox′ (A′ [ ins κ 1 ] [ ins vone n ]) n (c′ [ κ ])
; ↘ua = unbox∙ n
; ↘ub = unbox∙ n
; ua≈ub = ua≈ub
}
where
unbox[c[κ]]≈unbox[c′[κ]] : unbox n (mtran-c c κ) ≈ unbox n (mtran-c c′ κ) ∈ Bot
unbox[c[κ]]≈unbox[c′[κ]] ns κ′
with c≈c′ (ns ∥ O κ′ n) (κ ø κ′ ∥ n)
... | u , c↘u , c′↘u
rewrite Dn-comp c κ (κ′ ∥ n)
| Dn-comp c′ κ (κ′ ∥ n) = unbox (O κ′ n) u , Ru ns (O κ′ n) c↘u , Ru ns (O κ′ n) c′↘u
ua≈ub : unbox′ (A [ ins κ 1 ] [ ins vone n ]) n (c [ κ ]) ≈ unbox′ (A′ [ ins κ 1 ] [ ins vone n ]) n (c′ [ κ ]) ∈ El i (A≈A′ (ins κ n))
ua≈ub
rewrite D-ins-ins A κ n
| D-ins-ins A′ κ n = realizability-Re-Acc <i (A≈A′ (ins κ n)) unbox[c[κ]]≈unbox[c′[κ]]
realizability-Re-Acc {A = Π A _ _} {A′ = Π A′ _ _} {c} {c′} <i (Π A≈A′ T≈T′) c≈c′ {a = b} {b = b′} κ b≈b′
with T≈T′ κ b≈b′
... | record
{ ⟦T⟧ = ⟦T⟧
; ⟦T′⟧ = ⟦T′⟧
; ↘⟦T⟧ = ↘⟦T⟧
; ↘⟦T′⟧ = ↘⟦T′⟧
; T≈T′ = T≈T′
} =
record
{ fa = [ ⟦T⟧ ] c [ κ ] $′ ↓ (A [ κ ]) b
; fa′ = [ ⟦T′⟧ ] c′ [ κ ] $′ ↓ (A′ [ κ ]) b′
; ↘fa = $∙ (A [ κ ]) (c [ κ ]) (↘⟦T⟧)
; ↘fa′ = $∙ (A′ [ κ ]) (c′ [ κ ]) (↘⟦T′⟧)
; fa≈fa′ = realizability-Re-Acc <i T≈T′ c[κ]$b≈c′[κ]$b′
}
where
c[κ]$b≈c′[κ]$b′ : c [ κ ] $ ↓ (A [ κ ]) b ≈ c′ [ κ ] $ ↓ (A′ [ κ ]) b′ ∈ Bot
c[κ]$b≈c′[κ]$b′ ns κ′
with c≈c′ ns (κ ø κ′) | realizability-Rf-Acc <i (A≈A′ κ) b≈b′ ns κ′
... | u , c↘u , c′↘u | w , b↘w , b′↘w
rewrite Dn-comp c κ κ′
| Dn-comp c′ κ κ′ = u $ w , R$ ns c↘u b↘w , R$ ns c′↘u b′↘w
realizability-Rf-Acc : ∀ {i} →
Acc (_<_) i →
(A≈A′ : A ≈ A′ ∈ 𝕌 i) →
a ≈ a′ ∈ El i A≈A′ →
↓ A a ≈ ↓ A′ a′ ∈ Top
realizability-Rf-Acc <i (ne C≈C′) (ne c≈c′) ns κ
with c≈c′ ns κ
... | u , c↘u , c′↘u = ne u , Rne ns c↘u , Rne ns c′↘u
realizability-Rf-Acc <i N ze ns κ = ze , Rze ns , Rze ns
realizability-Rf-Acc <i N (su a≈a′) ns κ
with realizability-Rf-Acc <i N a≈a′ ns κ
... | w , a↘w , a′↘w = su w , Rsu ns a↘w , Rsu ns a′↘w
realizability-Rf-Acc <i N (ne c≈c′) ns κ
with c≈c′ ns κ
... | u , c↘u , c′↘u = ne u , RN ns c↘u , RN ns c′↘u
realizability-Rf-Acc (acc <i) (U j<i refl) a≈a′
rewrite 𝕌-wellfounded-≡-𝕌 _ j<i = realizability-Rty-Acc (<i _ j<i) a≈a′
realizability-Rf-Acc {A = □ A} {A′ = □ A′} <i (□ A≈A′) a≈a′ ns κ
with a≈a′ 1 κ
... | record
{ ua = ua
; ub = ua′
; ↘ua = ↘ua
; ↘ub = ↘ua′
; ua≈ub = ua≈ua′
}
with realizability-Rf-Acc <i (A≈A′ (ins κ 1)) ua≈ua′ (0 ∷⁺ ns) vone
... | w , ua↘w , ua′↘w
rewrite D-ap-vone (A [ ins κ 1 ])
| D-ap-vone (A′ [ ins κ 1 ])
| D-ap-vone ua
| D-ap-vone ua′ = box w , R□ ns ↘ua ua↘w , R□ ns ↘ua′ ua′↘w
realizability-Rf-Acc <i (Π A≈A′ T≈T′) a≈a′ ns κ
with realizability-Re-Acc <i (A≈A′ κ) (Bot-l (head ns))
... | z≈z
with a≈a′ κ z≈z
... | record
{ fa = fa
; fa′ = fa′
; ↘fa = ↘fa
; ↘fa′ = ↘fa′
; fa≈fa′ = fa≈fa′
}
with T≈T′ κ z≈z
... | record
{ ⟦T⟧ = ⟦T⟧
; ⟦T′⟧ = ⟦T′⟧
; ↘⟦T⟧ = ↘⟦T⟧
; ↘⟦T′⟧ = ↘⟦T′⟧
; T≈T′ = T≈T′
}
with realizability-Rf-Acc <i T≈T′ fa≈fa′ (inc ns) vone
... | w , fa↘w , fa′↘w
rewrite D-ap-vone fa
| D-ap-vone fa′
| D-ap-vone ⟦T⟧
| D-ap-vone ⟦T′⟧ = Λ w , RΛ ns ↘fa ↘⟦T⟧ fa↘w , RΛ ns ↘fa′ ↘⟦T′⟧ fa′↘w
realizability-Rty-Acc : ∀ {i} →
Acc (_<_) i →
(A≈A′ : A ≈ A′ ∈ 𝕌 i) →
↓ (U i) A ≈ ↓ (U i) A′ ∈ Top
realizability-Rty-Acc <i (ne C≈C′) ns κ
with C≈C′ ns κ
... | V , C↘V , C′↘V = ne V , RU ns (Rne ns C↘V) , RU ns (Rne ns C′↘V)
realizability-Rty-Acc <i N ns κ = N , RU ns (RN ns) , RU ns (RN ns)
realizability-Rty-Acc <i (U j<i refl) ns κ = Se _ , RU ns (RU ns) , RU ns (RU ns)
realizability-Rty-Acc {A = □ A} {A′ = □ A′} <i (□ A≈A′) ns κ
with realizability-Rty-Acc <i (A≈A′ (ins κ 1)) (0 ∷⁺ ns) vone
... | W , RU _ A↘W , RU _ A′↘W
rewrite D-ap-vone (A [ ins κ 1 ])
| D-ap-vone (A′ [ ins κ 1 ]) = □ W , RU ns (R□ ns A↘W) , RU ns (R□ ns A′↘W)
realizability-Rty-Acc {A = Π A _ _} {A′ = Π A′ _ _} <i (Π A≈A′ T≈T′) ns κ
with realizability-Re-Acc <i (A≈A′ κ) (Bot-l (head ns))
... | z≈z
with T≈T′ κ z≈z
... | record
{ ⟦T⟧ = ⟦T⟧
; ⟦T′⟧ = ⟦T′⟧
; ↘⟦T⟧ = ↘⟦T⟧
; ↘⟦T′⟧ = ↘⟦T′⟧
; T≈T′ = T≈T′
}
with realizability-Rty-Acc <i (A≈A′ κ) ns vone
... | W , RU _ A↘W , RU _ A′↘W
with realizability-Rty-Acc <i T≈T′ (inc ns) vone
... | w , RU _ T↘w , RU _ T′↘w
rewrite D-ap-vone (A [ κ ])
| D-ap-vone (A′ [ κ ])
| D-ap-vone ⟦T⟧
| D-ap-vone ⟦T′⟧ = Π W w , RU ns (RΠ ns A↘W ↘⟦T⟧ T↘w) , RU ns (RΠ ns A′↘W ↘⟦T′⟧ T′↘w)
realizability-Re : ∀ {i} (A≈A′ : A ≈ A′ ∈ 𝕌 i) →
(c ≈ c′ ∈ Bot → ↑ A c ≈ ↑ A′ c′ ∈ El i A≈A′)
realizability-Re A≈A′ = realizability-Re-Acc (<-wellFounded _) A≈A′
realizability-Rf : ∀ {i} (A≈A′ : A ≈ A′ ∈ 𝕌 i) →
(a ≈ a′ ∈ El i A≈A′ → ↓ A a ≈ ↓ A′ a′ ∈ Top)
realizability-Rf A≈A′ = realizability-Rf-Acc (<-wellFounded _) A≈A′
realizability-Rty : ∀ {i} (A≈A′ : A ≈ A′ ∈ 𝕌 i) →
A ≈ A′ ∈ TopT
realizability-Rty A≈A′ ns κ
with realizability-Rty-Acc (<-wellFounded _) A≈A′ ns κ
... | W , RU .ns ↘W , RU .ns ↘W′ = W , ↘W , ↘W′