------------------------------------------------------------------------ -- The Agda standard library -- -- List membership and some related definitions ------------------------------------------------------------------------ {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Bundles using (Setoid) module Data.List.Membership.Setoid {c ℓ} (S : Setoid c ℓ) where open import Data.List.Base using (List; []; _∷_) open import Data.List.Relation.Unary.Any as Any using (Any; map; here; there) open import Data.Product.Base as Product using (∃; _×_; _,_) open import Function.Base using (_∘_; flip; const) open import Relation.Binary.Definitions using (_Respects_) open import Relation.Nullary.Negation using (¬_) open import Relation.Unary using (Pred) open Setoid S renaming (Carrier to A) ------------------------------------------------------------------------ -- Definitions infix 4 _∈_ _∉_ _∈_ : A → List A → Set _ x ∈ xs = Any (x ≈_) xs _∉_ : A → List A → Set _ x ∉ xs = ¬ x ∈ xs ------------------------------------------------------------------------ -- Operations _∷=_ = Any._∷=_ {A = A} _─_ = Any._─_ {A = A} mapWith∈ : ∀ {b} {B : Set b} (xs : List A) → (∀ {x} → x ∈ xs → B) → List B mapWith∈ [] f = [] mapWith∈ (x ∷ xs) f = f (here refl) ∷ mapWith∈ xs (f ∘ there) ------------------------------------------------------------------------ -- Finding and losing witnesses module _ {p} {P : Pred A p} where find : ∀ {xs} → Any P xs → ∃ λ x → x ∈ xs × P x find (here px) = _ , here refl , px find (there pxs) = let x , x∈xs , px = find pxs in x , there x∈xs , px lose : P Respects _≈_ → ∀ {x xs} → x ∈ xs → P x → Any P xs lose resp x∈xs px = map (flip resp px) x∈xs