{-# OPTIONS --without-K --safe #-}

-- Definition of readback functions
--
-- The readback functions read from the domain model back to the syntax as
-- normal/neutral forms. The readback function is tyle-intended value directed and
-- performs η expansion during the process. Combined with evaluation, after reading
-- back, we obtain β-η normal form.
--
-- All readback functions receive a nonempty list of natural numbers. This list
-- contains the length of each context in a context stack and is responsible for
-- maintaining the correspondence between syntactic variables and domain
-- variables. The correspondence is at context level and can be seen in the Rl
-- constructor.
module Mint.Semantics.Readback where

open import Lib
open import Mint.Semantics.Domain
open import Mint.Semantics.Evaluation


instance
  ℕsHasTr : HasTr (List⁺ )
  ℕsHasTr = record { _∥_ = λ ns n  drop+ n ns }

-- Increment the topmost length, corresponding to entering a closure
inc : List⁺   List⁺ 
inc (n  ns) = (suc n  ns)

-- Readback functions
--
-- There are three readback functions:
-- Rf: readback from domain normal forms to syntactic normal forms, performing η expansion as well
-- Re: readback from domain neutral forms to syntactic neutral forms
-- Rty: readback from domain value that is intended to represent types to syntactic normal forms
infix 4 Rf_-_↘_ Re_-_↘_ Rty_-_↘_

mutual

  data Rf_-_↘_ : List⁺   Df  Nf  Set where
    RU  :  {i} ns 
          Rty ns - A  W 
          ---------------------
          Rf ns -  (U i) A  W
    Rze :  ns 
          Rf ns -  N ze  ze
    Rsu :  ns 
          Rf ns -  N a  w 
          ---------------------------
          Rf ns -  N (su a)  (su w)
      :  ns 
          a  l′ A (head ns)  b 
           T  ρ  l′ A (head ns)  B 
          Rf inc ns -  B b  w 
          ------------------------------
          Rf ns -  (Π A T ρ) a  Λ w
    R□  :  ns 
          unbox∙ 1 , a  b 
          Rf 0 ∷⁺ ns -  A b  w 
          -------------------------
          Rf ns -  ( A) a  box w
    RN  :  ns 
          Re ns - c  u 
          --------------------------
          Rf ns -  N ( N c)  ne u
    Rne :  ns 
          Re ns - c′  u 
          ----------------------------------
          Rf ns -  ( A c) ( A′ c′)  ne u

  data Re_-_↘_ : List⁺   Dn  Ne  Set where
    Rl :  ns x 
         Re ns - l x  v (head ns  x  1)
    R$ :  ns 
         Re ns - c  u 
         Rf ns - d  w 
         ---------------------
         Re ns - c $ d  u $ w
    Ru :  ns k 
         Re ns  k - c  u 
         -------------------------
         Re ns - unbox k c  unbox k u
    Rr :  ns 
         -- compute normal form of the motive
          T  ρ  l′ N (head ns)  A 
         Rty inc ns - A  W 
         -- compute normal form of the base case
          T  ρ  ze  A′ 
         Rf ns -  A′ a  w 
         -- compute normal form of the step case
          t  ρ  l′ N (head ns)  l′ A (suc (head ns))  b 
          T  ρ  su (l′ N (head ns))  A″ 
         Rf inc (inc ns) -  A″ b  w′ 
         -- compute neutral form of the number
         Re ns - c  u 
         Re ns - rec T a t ρ c  rec W w w′ u

  data Rty_-_↘_ : List⁺   D  Nf  Set where
    RU  :  {i} ns 
          Rty ns - U i  Se i
    RN  :  ns 
          Rty ns - N  N
    R□  :  ns 
          Rty 0 ∷⁺ ns - A  W 
          ---------------------
          Rty ns -  A   W
      :  ns 
          Rty ns - A  W 
           T  ρ  l′ A (head ns)  B 
          Rty inc ns - B  W′ 
          ------------------------------
          Rty ns - Π A T ρ  Π W W′
    Rne :  ns 
          Re ns - c  V 
          ---------------------
          Rty ns -  A c  ne V

-- All readback functions are deterministic.
mutual
  Rf-det :  {ns}  Rf ns - d  w  Rf ns - d  w′  w  w′
  Rf-det (RU _ ↘W) (RU _ ↘W′)   = Rty-det ↘W ↘W′
  Rf-det (Rze _) (Rze _)        = refl
  Rf-det (Rsu _ ↘w) (Rsu _ ↘w′) = cong su (Rf-det ↘w ↘w′)
  Rf-det ( _ ↘a ↘A ↘w) ( _ ↘a′ ↘A′ ↘w′)
    rewrite ap-det ↘a ↘a′
          | ⟦⟧-det ↘A ↘A′       = cong Λ (Rf-det ↘w ↘w′)
  Rf-det (R□ _ ↘a ↘w) (R□ _ ↘a′ ↘w′)
    rewrite unbox-det ↘a ↘a′    = cong box (Rf-det ↘w ↘w′)
  Rf-det (RN _ ↘u) (RN _ ↘u′)   = cong ne (Re-det ↘u ↘u′)
  Rf-det (Rne _ ↘u) (Rne _ ↘u′) = cong ne (Re-det ↘u ↘u′)

  Re-det :  {ns}  Re ns - c  u  Re ns - c  u′  u  u′
  Re-det (Rl _ x) (Rl _ .x)          = refl
  Re-det (R$ _ ↘c ↘w) (R$ _ ↘c′ ↘w′) = cong₂ _$_ (Re-det ↘c ↘c′) (Rf-det ↘w ↘w′)
  Re-det (Ru _ k ↘c) (Ru _ .k ↘c′)   = cong (unbox k) (Re-det ↘c ↘c′)
  Re-det (Rr _ ↘A ↘W ↘Az ↘w ↘b ↘As ↘w′ ↘c) (Rr _ ↘A′ ↘W′ ↘Az′ ↘w″ ↘b′ ↘As′ ↘w‴ ↘c′)
    rewrite ⟦⟧-det ↘A ↘A′
          | Rty-det ↘W ↘W′
          | ⟦⟧-det ↘Az ↘Az′
          | Rf-det ↘w ↘w″
          | ⟦⟧-det ↘b ↘b′
          | ⟦⟧-det ↘As ↘As′
          | Rf-det ↘w′ ↘w‴
          | Re-det ↘c ↘c′            = refl

  Rty-det :  {ns}  Rty ns - A  W  Rty ns - A  W′  W  W′
  Rty-det (RU _) (RU _)          = refl
  Rty-det (RN _) (RN _)          = refl
  Rty-det (R□ _ ↘W) (R□ _ ↘W′)   = cong  (Rty-det ↘W ↘W′)
  Rty-det ( _ ↘W ↘B ↘W′) ( _ ↘W″ ↘B′ ↘W‴)
    rewrite Rty-det ↘W ↘W″
          | ⟦⟧-det ↘B ↘B′
          | Rty-det ↘W′ ↘W‴      = refl
  Rty-det (Rne _ ↘V) (Rne _ ↘V′) = cong ne (Re-det ↘V ↘V′)

-- Normalization by evaluation where an evaluation environment is passed externally
record NbEEnvs ns ρ t T w : Set where
  field
    ⟦t⟧  : D
    ⟦T⟧  : D
    ↘⟦t⟧ :  t  ρ  ⟦t⟧
    ↘⟦T⟧ :  T  ρ  ⟦T⟧
    ↓⟦t⟧ : Rf ns -  ⟦T⟧ ⟦t⟧  w

-- Compute an initial global evaluation environment using a context stack
data InitEnvs : Ctxs  Envs  Set where
  base : InitEnvs ([]  []) empty
  s-κ  : InitEnvs Γ ρ 
         ----------------------------
         InitEnvs ([] ∷⁺ Γ) (ext ρ 1)
  s-∺  : InitEnvs (Ψ  Ψs) ρ 
          T  ρ  A 
         ------------------------------------------
         InitEnvs ((T  Ψ)  Ψs) (ρ  l′ A (len Ψ))

-- Normalization by evaluation
--
-- We will show that if Γ ⊢ t ∶ T, then there must be a normal form w such that NbE Γ t T w
record NbE Γ t T w : Set where
  field
    envs : Envs
    init : InitEnvs Γ envs
    nbe  : NbEEnvs (map len Γ) envs t T w

-- Above definitions are all deterministic
InitEnvs-det : InitEnvs Γ ρ  InitEnvs Γ ρ′  ρ  ρ′
InitEnvs-det base base                     = refl
InitEnvs-det (s-κ ↘ρ) (s-κ ↘ρ′)            = cong  ρ  ext ρ 1) (InitEnvs-det ↘ρ ↘ρ′)
InitEnvs-det (s-∺ {Ψ} ↘ρ ↘A) (s-∺ ↘ρ′ ↘A′)
  rewrite InitEnvs-det ↘ρ ↘ρ′ = cong  A  _  l′ A (len Ψ)) (⟦⟧-det ↘A ↘A′)

NbE-det : NbE Γ t T w 
          NbE Γ t T w′ 
          w  w′
NbE-det nbe nbe′
  with nbe | nbe′
... | record { envs = _ ; init = ↘ρ ; nbe = record { ⟦t⟧ = _ ; ⟦T⟧ = _ ; ↘⟦t⟧ = ↘⟦t⟧ ; ↘⟦T⟧ = ↘⟦T⟧ ; ↓⟦t⟧ = ↓⟦t⟧ } }
    | record { envs = _ ; init = ↘ρ′ ; nbe = record { ⟦t⟧ = _ ; ⟦T⟧ = _ ; ↘⟦t⟧ = ↘⟦t⟧′ ; ↘⟦T⟧ = ↘⟦T⟧′ ; ↓⟦t⟧ = ↓⟦t⟧′ } }
    rewrite InitEnvs-det ↘ρ ↘ρ′
          | ⟦⟧-det ↘⟦T⟧ ↘⟦T⟧′
          | ⟦⟧-det ↘⟦t⟧ ↘⟦t⟧′ = Rf-det ↓⟦t⟧ ↓⟦t⟧′