{-# OPTIONS --without-K --safe #-}
module Mint.Statics.Concise where
open import Lib
open import Mint.Statics.Syntax public
infix 4 ⊢_ _⊢_ _⊢_∶_ _⊢s_∶_ _⊢_≈_∶_ _⊢_≈_ _⊢s_≈_∶_ ⊢_≈_
mutual
data ⊢_ : Ctxs → Set where
⊢[] : ⊢ [] ∷ []
⊢κ : ⊢ Γ →
⊢ [] ∷⁺ Γ
⊢∺ : ∀ {i} →
⊢ Γ →
Γ ⊢ T ∶ Se i →
⊢ T ∺ Γ
data ⊢_≈_ : Ctxs → Ctxs → Set where
[]-≈ : ⊢ [] ∷ [] ≈ [] ∷ []
κ-cong : ⊢ Γ ≈ Δ →
⊢ [] ∷⁺ Γ ≈ [] ∷⁺ Δ
∺-cong : ∀ {i} →
⊢ Γ ≈ Δ →
Γ ⊢ T ≈ T′ ∶ Se i →
⊢ T ∺ Γ ≈ T′ ∺ Δ
data _⊢_∶_ : Ctxs → Exp → Typ → Set where
N-wf : ∀ i →
⊢ Γ →
Γ ⊢ N ∶ Se i
Se-wf : ∀ i →
⊢ Γ →
Γ ⊢ Se i ∶ Se (1 + i)
Π-wf : ∀ {i} →
Γ ⊢ S ∶ Se i →
S ∺ Γ ⊢ T ∶ Se i →
Γ ⊢ Π S T ∶ Se i
□-wf : ∀ {i} →
[] ∷⁺ Γ ⊢ T ∶ Se i →
Γ ⊢ □ T ∶ Se i
vlookup : ∀ {x} →
⊢ Γ →
x ∶ T ∈! Γ →
Γ ⊢ v x ∶ T
ze-I : ⊢ Γ →
Γ ⊢ ze ∶ N
su-I : Γ ⊢ t ∶ N →
Γ ⊢ su t ∶ N
N-E : ∀ {i} →
N ∺ Γ ⊢ T ∶ Se i →
Γ ⊢ s ∶ T [| ze ] →
T ∺ N ∺ Γ ⊢ r ∶ T [ (wk ∘ wk) , su (v 1) ] →
Γ ⊢ t ∶ N →
Γ ⊢ rec T s r t ∶ T [| t ]
Λ-I : S ∺ Γ ⊢ t ∶ T →
Γ ⊢ Λ t ∶ Π S T
Λ-E : Γ ⊢ r ∶ Π S T →
Γ ⊢ s ∶ S →
Γ ⊢ r $ s ∶ T [| s ]
□-I : [] ∷⁺ Γ ⊢ t ∶ T →
Γ ⊢ box t ∶ □ T
□-E : ∀ {n} Ψs →
Γ ⊢ t ∶ □ T →
⊢ Ψs ++⁺ Γ →
len Ψs ≡ n →
Ψs ++⁺ Γ ⊢ unbox n t ∶ T [ I ; n ]
t[σ] : Δ ⊢ t ∶ T →
Γ ⊢s σ ∶ Δ →
Γ ⊢ t [ σ ] ∶ T [ σ ]
cumu : ∀ {i} →
Γ ⊢ T ∶ Se i →
Γ ⊢ T ∶ Se (1 + i)
conv : ∀ {i} →
Γ ⊢ t ∶ S →
Γ ⊢ S ≈ T ∶ Se i →
Γ ⊢ t ∶ T
data _⊢s_∶_ : Ctxs → Substs → Ctxs → Set where
s-I : ⊢ Γ →
Γ ⊢s I ∶ Γ
s-wk : ⊢ T ∺ Γ →
T ∺ Γ ⊢s wk ∶ Γ
s-∘ : Γ ⊢s τ ∶ Γ′ →
Γ′ ⊢s σ ∶ Γ″ →
Γ ⊢s σ ∘ τ ∶ Γ″
s-, : ∀ {i} →
Γ ⊢s σ ∶ Δ →
Δ ⊢ T ∶ Se i →
Γ ⊢ t ∶ T [ σ ] →
Γ ⊢s σ , t ∶ T ∺ Δ
s-; : ∀ {n} Ψs →
Γ ⊢s σ ∶ Δ →
⊢ Ψs ++⁺ Γ →
len Ψs ≡ n →
Ψs ++⁺ Γ ⊢s σ ; n ∶ [] ∷⁺ Δ
s-conv : Γ ⊢s σ ∶ Δ →
⊢ Δ ≈ Δ′ →
Γ ⊢s σ ∶ Δ′
data _⊢_≈_∶_ : Ctxs → Exp → Exp → Typ → Set where
N-[] : ∀ i →
Γ ⊢s σ ∶ Δ →
Γ ⊢ N [ σ ] ≈ N ∶ Se i
Se-[] : ∀ i →
Γ ⊢s σ ∶ Δ →
Γ ⊢ Se i [ σ ] ≈ Se i ∶ Se (1 + i)
Π-[] : ∀ {i} →
Γ ⊢s σ ∶ Δ →
Δ ⊢ S ∶ Se i →
S ∺ Δ ⊢ T ∶ Se i →
Γ ⊢ Π S T [ σ ] ≈ Π (S [ σ ]) (T [ q σ ]) ∶ Se i
□-[] : ∀ {i} →
Γ ⊢s σ ∶ Δ →
[] ∷⁺ Δ ⊢ T ∶ Se i →
Γ ⊢ □ T [ σ ] ≈ □ (T [ σ ; 1 ]) ∶ Se i
Π-cong : ∀ {i} →
Γ ⊢ S ≈ S′ ∶ Se i →
S ∺ Γ ⊢ T ≈ T′ ∶ Se i →
Γ ⊢ Π S T ≈ Π S′ T′ ∶ Se i
□-cong : ∀ {i} →
[] ∷⁺ Γ ⊢ T ≈ T′ ∶ Se i →
Γ ⊢ □ T ≈ □ T′ ∶ Se i
v-≈ : ∀ {x} →
⊢ Γ →
x ∶ T ∈! Γ →
Γ ⊢ v x ≈ v x ∶ T
ze-≈ : ⊢ Γ →
Γ ⊢ ze ≈ ze ∶ N
su-cong : Γ ⊢ t ≈ t′ ∶ N →
Γ ⊢ su t ≈ su t′ ∶ N
rec-cong : ∀ {i} →
N ∺ Γ ⊢ T ≈ T′ ∶ Se i →
Γ ⊢ s ≈ s′ ∶ T [ I , ze ] →
T ∺ N ∺ Γ ⊢ r ≈ r′ ∶ T [ (wk ∘ wk) , su (v 1) ] →
Γ ⊢ t ≈ t′ ∶ N →
Γ ⊢ rec T s r t ≈ rec T′ s′ r′ t′ ∶ T [| t ]
Λ-cong : S ∺ Γ ⊢ t ≈ t′ ∶ T →
Γ ⊢ Λ t ≈ Λ t′ ∶ Π S T
$-cong : Γ ⊢ r ≈ r′ ∶ Π S T →
Γ ⊢ s ≈ s′ ∶ S →
Γ ⊢ r $ s ≈ r′ $ s′ ∶ T [| s ]
box-cong : [] ∷⁺ Γ ⊢ t ≈ t′ ∶ T →
Γ ⊢ box t ≈ box t′ ∶ □ T
unbox-cong : ∀ {n} Ψs →
Γ ⊢ t ≈ t′ ∶ □ T →
⊢ Ψs ++⁺ Γ →
len Ψs ≡ n →
Ψs ++⁺ Γ ⊢ unbox n t ≈ unbox n t′ ∶ T [ I ; n ]
[]-cong : Δ ⊢ t ≈ t′ ∶ T →
Γ ⊢s σ ≈ σ′ ∶ Δ →
Γ ⊢ t [ σ ] ≈ t′ [ σ′ ] ∶ T [ σ ]
ze-[] : Γ ⊢s σ ∶ Δ →
Γ ⊢ ze [ σ ] ≈ ze ∶ N
su-[] : Γ ⊢s σ ∶ Δ →
Δ ⊢ t ∶ N →
Γ ⊢ su t [ σ ] ≈ su (t [ σ ]) ∶ N
rec-[] : ∀ {i} →
Γ ⊢s σ ∶ Δ →
N ∺ Δ ⊢ T ∶ Se i →
Δ ⊢ s ∶ T [| ze ] →
T ∺ N ∺ Δ ⊢ r ∶ T [ (wk ∘ wk) , su (v 1) ] →
Δ ⊢ t ∶ N →
Γ ⊢ rec T s r t [ σ ] ≈ rec (T [ q σ ]) (s [ σ ]) (r [ q (q σ) ]) (t [ σ ]) ∶ T [ σ , t [ σ ] ]
Λ-[] : Γ ⊢s σ ∶ Δ →
S ∺ Δ ⊢ t ∶ T →
Γ ⊢ Λ t [ σ ] ≈ Λ (t [ q σ ]) ∶ Π S T [ σ ]
$-[] : Γ ⊢s σ ∶ Δ →
Δ ⊢ r ∶ Π S T →
Δ ⊢ s ∶ S →
Γ ⊢ (r $ s) [ σ ] ≈ r [ σ ] $ s [ σ ] ∶ T [ σ , s [ σ ] ]
box-[] : Γ ⊢s σ ∶ Δ →
[] ∷⁺ Δ ⊢ t ∶ T →
Γ ⊢ box t [ σ ] ≈ box (t [ σ ; 1 ]) ∶ □ T [ σ ]
unbox-[] : ∀ {n} Ψs →
Δ ⊢ t ∶ □ T →
Γ ⊢s σ ∶ Ψs ++⁺ Δ →
len Ψs ≡ n →
Γ ⊢ unbox n t [ σ ] ≈ unbox (O σ n) (t [ σ ∥ n ]) ∶ T [ (σ ∥ n) ; O σ n ]
rec-β-ze : ∀ {i} →
N ∺ Γ ⊢ T ∶ Se i →
Γ ⊢ s ∶ T [| ze ] →
T ∺ N ∺ Γ ⊢ r ∶ T [ (wk ∘ wk) , su (v 1) ] →
Γ ⊢ rec T s r ze ≈ s ∶ T [| ze ]
rec-β-su : ∀ {i} →
N ∺ Γ ⊢ T ∶ Se i →
Γ ⊢ s ∶ T [| ze ] →
T ∺ N ∺ Γ ⊢ r ∶ T [ (wk ∘ wk) , su (v 1) ] →
Γ ⊢ t ∶ N →
Γ ⊢ rec T s r (su t) ≈ r [ (I , t) , rec T s r t ] ∶ T [| su t ]
Λ-β : S ∺ Γ ⊢ t ∶ T →
Γ ⊢ s ∶ S →
Γ ⊢ Λ t $ s ≈ t [| s ] ∶ T [| s ]
Λ-η : Γ ⊢ t ∶ Π S T →
Γ ⊢ t ≈ Λ (t [ wk ] $ v 0) ∶ Π S T
□-β : ∀ {n} Ψs →
[] ∷⁺ Γ ⊢ t ∶ T →
⊢ Ψs ++⁺ Γ →
len Ψs ≡ n →
Ψs ++⁺ Γ ⊢ unbox n (box t) ≈ t [ I ; n ] ∶ T [ I ; n ]
□-η : Γ ⊢ t ∶ □ T →
Γ ⊢ t ≈ box (unbox 1 t) ∶ □ T
[I] : Γ ⊢ t ∶ T →
Γ ⊢ t [ I ] ≈ t ∶ T
[wk] : ∀ {x} →
⊢ S ∺ Γ →
x ∶ T ∈! Γ →
S ∺ Γ ⊢ v x [ wk ] ≈ v (suc x) ∶ T [ wk ]
[∘] : Γ ⊢s τ ∶ Γ′ →
Γ′ ⊢s σ ∶ Γ″ →
Γ″ ⊢ t ∶ T →
Γ ⊢ t [ σ ∘ τ ] ≈ t [ σ ] [ τ ] ∶ T [ σ ∘ τ ]
[,]-v-ze : ∀ {i} →
Γ ⊢s σ ∶ Δ →
Δ ⊢ S ∶ Se i →
Γ ⊢ s ∶ S [ σ ] →
Γ ⊢ v 0 [ σ , s ] ≈ s ∶ S [ σ ]
[,]-v-su : ∀ {i x} →
Γ ⊢s σ ∶ Δ →
Δ ⊢ S ∶ Se i →
Γ ⊢ s ∶ S [ σ ] →
x ∶ T ∈! Δ →
Γ ⊢ v (suc x) [ σ , s ] ≈ v x [ σ ] ∶ T [ σ ]
≈-cumu : ∀ {i} →
Γ ⊢ T ≈ T′ ∶ Se i →
Γ ⊢ T ≈ T′ ∶ Se (1 + i)
≈-conv : ∀ {i} →
Γ ⊢ s ≈ t ∶ S →
Γ ⊢ S ≈ T ∶ Se i →
Γ ⊢ s ≈ t ∶ T
≈-sym : Γ ⊢ t ≈ t′ ∶ T →
Γ ⊢ t′ ≈ t ∶ T
≈-trans : Γ ⊢ t ≈ t′ ∶ T →
Γ ⊢ t′ ≈ t″ ∶ T →
Γ ⊢ t ≈ t″ ∶ T
data _⊢s_≈_∶_ : Ctxs → Substs → Substs → Ctxs → Set where
I-≈ : ⊢ Γ →
Γ ⊢s I ≈ I ∶ Γ
wk-≈ : ⊢ T ∺ Γ →
T ∺ Γ ⊢s wk ≈ wk ∶ Γ
∘-cong : Γ ⊢s τ ≈ τ′ ∶ Γ′ →
Γ′ ⊢s σ ≈ σ′ ∶ Γ″ →
Γ ⊢s σ ∘ τ ≈ σ′ ∘ τ′ ∶ Γ″
,-cong : ∀ {i} →
Γ ⊢s σ ≈ σ′ ∶ Δ →
Δ ⊢ T ∶ Se i →
Γ ⊢ t ≈ t′ ∶ T [ σ ] →
Γ ⊢s σ , t ≈ σ′ , t′ ∶ T ∺ Δ
;-cong : ∀ {n} Ψs →
Γ ⊢s σ ≈ σ′ ∶ Δ →
⊢ Ψs ++⁺ Γ →
len Ψs ≡ n →
Ψs ++⁺ Γ ⊢s σ ; n ≈ σ′ ; n ∶ [] ∷⁺ Δ
I-∘ : Γ ⊢s σ ∶ Δ →
Γ ⊢s I ∘ σ ≈ σ ∶ Δ
∘-I : Γ ⊢s σ ∶ Δ →
Γ ⊢s σ ∘ I ≈ σ ∶ Δ
∘-assoc : ∀ {Γ‴} →
Γ′ ⊢s σ ∶ Γ →
Γ″ ⊢s σ′ ∶ Γ′ →
Γ‴ ⊢s σ″ ∶ Γ″ →
Γ‴ ⊢s σ ∘ σ′ ∘ σ″ ≈ σ ∘ (σ′ ∘ σ″) ∶ Γ
,-∘ : ∀ {i} →
Γ′ ⊢s σ ∶ Γ″ →
Γ″ ⊢ T ∶ Se i →
Γ′ ⊢ t ∶ T [ σ ] →
Γ ⊢s τ ∶ Γ′ →
Γ ⊢s (σ , t) ∘ τ ≈ (σ ∘ τ) , t [ τ ] ∶ T ∺ Γ″
;-∘ : ∀ {n} Ψs →
Γ′ ⊢s σ ∶ Γ″ →
Γ ⊢s τ ∶ Ψs ++⁺ Γ′ →
len Ψs ≡ n →
Γ ⊢s σ ; n ∘ τ ≈ (σ ∘ τ ∥ n) ; O τ n ∶ [] ∷⁺ Γ″
p-, : ∀ {i} →
Γ′ ⊢s σ ∶ Γ →
Γ ⊢ T ∶ Se i →
Γ′ ⊢ t ∶ T [ σ ] →
Γ′ ⊢s p (σ , t) ≈ σ ∶ Γ
,-ext : Γ′ ⊢s σ ∶ T ∺ Γ →
Γ′ ⊢s σ ≈ p σ , v 0 [ σ ] ∶ T ∺ Γ
;-ext : Γ ⊢s σ ∶ [] ∷⁺ Δ →
Γ ⊢s σ ≈ (σ ∥ 1) ; O σ 1 ∶ [] ∷⁺ Δ
s-≈-sym : Γ ⊢s σ ≈ σ′ ∶ Δ →
Γ ⊢s σ′ ≈ σ ∶ Δ
s-≈-trans : Γ ⊢s σ ≈ σ′ ∶ Δ →
Γ ⊢s σ′ ≈ σ″ ∶ Δ →
Γ ⊢s σ ≈ σ″ ∶ Δ
s-≈-conv : Γ ⊢s σ ≈ σ′ ∶ Δ →
⊢ Δ ≈ Δ′ →
Γ ⊢s σ ≈ σ′ ∶ Δ′
_⊢_ : Ctxs → Typ → Set
Γ ⊢ T = ∃ λ i → Γ ⊢ T ∶ Se i
_⊢_≈_ : Ctxs → Exp → Exp → Set
Γ ⊢ S ≈ T = ∃ λ i → Γ ⊢ S ≈ T ∶ Se i
⊢p : ⊢ T ∺ Δ → Γ ⊢s σ ∶ T ∺ Δ → Γ ⊢s p σ ∶ Δ
⊢p ⊢TΔ ⊢σ = s-∘ ⊢σ (s-wk ⊢TΔ)
p-cong : ⊢ T ∺ Δ → Γ ⊢s σ ≈ σ′ ∶ T ∺ Δ → Γ ⊢s p σ ≈ p σ′ ∶ Δ
p-cong ⊢TΔ σ≈σ′ = ∘-cong σ≈σ′ (wk-≈ ⊢TΔ)