{-# OPTIONS --without-K --safe #-}
module Mint.Statics.Equiv where
open import Lib
open import Mint.Statics.Full as F
open import Mint.Statics.Concise as C
open import Mint.Statics.CtxEquiv
open import Mint.Statics.Presup
open import Mint.Statics.Misc
open import Mint.Statics.Properties.Box
open import Mint.Statics.Properties.Pi
mutual
F⇒C-⊢ : F.⊢ Γ →
C.⊢ Γ
F⇒C-⊢ ⊢[] = ⊢[]
F⇒C-⊢ (⊢κ ⊢Γ) = ⊢κ (F⇒C-⊢ ⊢Γ)
F⇒C-⊢ (⊢∺ ⊢Γ ⊢T) = ⊢∺ (F⇒C-⊢ ⊢Γ) (F⇒C-tm ⊢T)
F⇒C-tm : Γ F.⊢ t ∶ T →
Γ C.⊢ t ∶ T
F⇒C-tm (N-wf i ⊢Γ) = N-wf i (F⇒C-⊢ ⊢Γ)
F⇒C-tm (Se-wf i ⊢Γ) = Se-wf i (F⇒C-⊢ ⊢Γ)
F⇒C-tm (Π-wf ⊢S ⊢T) = Π-wf (F⇒C-tm ⊢S) (F⇒C-tm ⊢T)
F⇒C-tm (□-wf ⊢T) = □-wf (F⇒C-tm ⊢T)
F⇒C-tm (vlookup ⊢Γ T∈Γ) = vlookup (F⇒C-⊢ ⊢Γ) T∈Γ
F⇒C-tm (ze-I ⊢Γ) = ze-I (F⇒C-⊢ ⊢Γ)
F⇒C-tm (su-I ⊢t) = su-I (F⇒C-tm ⊢t)
F⇒C-tm (N-E ⊢T ⊢s ⊢r ⊢t) = N-E (F⇒C-tm ⊢T) (F⇒C-tm ⊢s) (F⇒C-tm ⊢r) (F⇒C-tm ⊢t)
F⇒C-tm (Λ-I _ ⊢t) = Λ-I (F⇒C-tm ⊢t)
F⇒C-tm (Λ-E _ _ ⊢t ⊢r) = Λ-E (F⇒C-tm ⊢t) (F⇒C-tm ⊢r)
F⇒C-tm (□-I ⊢t) = □-I (F⇒C-tm ⊢t)
F⇒C-tm (□-E Ψs _ ⊢t ⊢Γ eq) = □-E Ψs (F⇒C-tm ⊢t) (F⇒C-⊢ ⊢Γ) eq
F⇒C-tm (t[σ] ⊢t ⊢σ) = t[σ] (F⇒C-tm ⊢t) (F⇒C-s ⊢σ)
F⇒C-tm (cumu ⊢t) = cumu (F⇒C-tm ⊢t)
F⇒C-tm (conv ⊢t T≈T′) = conv (F⇒C-tm ⊢t) (F⇒C-≈ T≈T′)
F⇒C-s : Γ F.⊢s σ ∶ Δ →
Γ C.⊢s σ ∶ Δ
F⇒C-s (s-I ⊢Γ) = s-I (F⇒C-⊢ ⊢Γ)
F⇒C-s (s-wk ⊢Γ) = s-wk (F⇒C-⊢ ⊢Γ)
F⇒C-s (s-∘ ⊢σ ⊢δ) = s-∘ (F⇒C-s ⊢σ) (F⇒C-s ⊢δ)
F⇒C-s (s-, ⊢σ ⊢T ⊢t) = s-, (F⇒C-s ⊢σ) (F⇒C-tm ⊢T) (F⇒C-tm ⊢t)
F⇒C-s (s-; Ψs ⊢σ ⊢Γ eq) = s-; Ψs (F⇒C-s ⊢σ) (F⇒C-⊢ ⊢Γ) eq
F⇒C-s (s-conv ⊢σ Δ′≈Δ) = s-conv (F⇒C-s ⊢σ) (F⇒C-⊢≈ Δ′≈Δ)
F⇒C-⊢≈ : F.⊢ Γ ≈ Δ →
C.⊢ Γ ≈ Δ
F⇒C-⊢≈ []-≈ = []-≈
F⇒C-⊢≈ (κ-cong Γ≈Δ) = κ-cong (F⇒C-⊢≈ Γ≈Δ)
F⇒C-⊢≈ (∺-cong Γ≈Δ _ _ T≈T′ _) = ∺-cong (F⇒C-⊢≈ Γ≈Δ) (F⇒C-≈ T≈T′)
F⇒C-≈ : Γ F.⊢ t ≈ t′ ∶ T →
Γ C.⊢ t ≈ t′ ∶ T
F⇒C-≈ (N-[] i ⊢σ) = N-[] i (F⇒C-s ⊢σ)
F⇒C-≈ (Se-[] i ⊢σ) = Se-[] i (F⇒C-s ⊢σ)
F⇒C-≈ (Π-[] ⊢σ ⊢S ⊢T) = Π-[] (F⇒C-s ⊢σ) (F⇒C-tm ⊢S) (F⇒C-tm ⊢T)
F⇒C-≈ (□-[] ⊢σ ⊢T) = □-[] (F⇒C-s ⊢σ) (F⇒C-tm ⊢T)
F⇒C-≈ (Π-cong ⊢S S≈S′ T≈T′) = Π-cong (F⇒C-≈ S≈S′) (F⇒C-≈ T≈T′)
F⇒C-≈ (□-cong T≈T′) = □-cong (F⇒C-≈ T≈T′)
F⇒C-≈ (v-≈ ⊢Γ T∈Γ) = v-≈ (F⇒C-⊢ ⊢Γ) T∈Γ
F⇒C-≈ (ze-≈ ⊢Γ) = ze-≈ (F⇒C-⊢ ⊢Γ)
F⇒C-≈ (su-cong t≈t′) = su-cong (F⇒C-≈ t≈t′)
F⇒C-≈ (rec-cong ⊢T T≈T′ s≈s′ r≈r′ t≈t′) = rec-cong (F⇒C-≈ T≈T′) (F⇒C-≈ s≈s′) (F⇒C-≈ r≈r′) (F⇒C-≈ t≈t′)
F⇒C-≈ (Λ-cong ⊢S t≈t′) = Λ-cong (F⇒C-≈ t≈t′)
F⇒C-≈ ($-cong _ _ t≈t′ r≈r′) = $-cong (F⇒C-≈ t≈t′) (F⇒C-≈ r≈r′)
F⇒C-≈ (box-cong t≈t′) = box-cong (F⇒C-≈ t≈t′)
F⇒C-≈ (unbox-cong Ψs _ t≈t′ ⊢Γ eq) = unbox-cong Ψs (F⇒C-≈ t≈t′) (F⇒C-⊢ ⊢Γ) eq
F⇒C-≈ ([]-cong t≈t′ σ≈σ′) = []-cong (F⇒C-≈ t≈t′) (F⇒C-s-≈ σ≈σ′)
F⇒C-≈ (ze-[] ⊢σ) = ze-[] (F⇒C-s ⊢σ)
F⇒C-≈ (su-[] ⊢σ ⊢t) = su-[] (F⇒C-s ⊢σ) (F⇒C-tm ⊢t)
F⇒C-≈ (rec-[] ⊢σ ⊢T ⊢s ⊢r ⊢t) = rec-[] (F⇒C-s ⊢σ) (F⇒C-tm ⊢T) (F⇒C-tm ⊢s) (F⇒C-tm ⊢r) (F⇒C-tm ⊢t)
F⇒C-≈ (Λ-[] ⊢σ ⊢t) = Λ-[] (F⇒C-s ⊢σ) (F⇒C-tm ⊢t)
F⇒C-≈ ($-[] _ _ ⊢σ ⊢t ⊢s) = $-[] (F⇒C-s ⊢σ) (F⇒C-tm ⊢t) (F⇒C-tm ⊢s)
F⇒C-≈ (box-[] ⊢σ ⊢t) = box-[] (F⇒C-s ⊢σ) (F⇒C-tm ⊢t)
F⇒C-≈ (unbox-[] Ψs _ ⊢t ⊢σ eq) = unbox-[] Ψs (F⇒C-tm ⊢t) (F⇒C-s ⊢σ) eq
F⇒C-≈ (rec-β-ze ⊢T ⊢s ⊢r) = rec-β-ze (F⇒C-tm ⊢T) (F⇒C-tm ⊢s) (F⇒C-tm ⊢r)
F⇒C-≈ (rec-β-su ⊢T ⊢s ⊢r ⊢t) = rec-β-su (F⇒C-tm ⊢T) (F⇒C-tm ⊢s) (F⇒C-tm ⊢r) (F⇒C-tm ⊢t)
F⇒C-≈ (Λ-β _ _ ⊢t ⊢s) = Λ-β (F⇒C-tm ⊢t) (F⇒C-tm ⊢s)
F⇒C-≈ (Λ-η _ _ ⊢t) = Λ-η (F⇒C-tm ⊢t)
F⇒C-≈ (□-β Ψs _ ⊢t ⊢Γ eq) = □-β Ψs (F⇒C-tm ⊢t) (F⇒C-⊢ ⊢Γ) eq
F⇒C-≈ (□-η _ ⊢t) = □-η (F⇒C-tm ⊢t)
F⇒C-≈ ([I] ⊢t) = [I] (F⇒C-tm ⊢t)
F⇒C-≈ ([wk] ⊢SΓ T∈Γ) = [wk] (F⇒C-⊢ ⊢SΓ) T∈Γ
F⇒C-≈ ([∘] ⊢δ ⊢σ ⊢t) = [∘] (F⇒C-s ⊢δ) (F⇒C-s ⊢σ) (F⇒C-tm ⊢t)
F⇒C-≈ ([,]-v-ze ⊢σ ⊢S ⊢t) = [,]-v-ze (F⇒C-s ⊢σ) (F⇒C-tm ⊢S) (F⇒C-tm ⊢t)
F⇒C-≈ ([,]-v-su ⊢σ ⊢S ⊢t T∈Δ) = [,]-v-su (F⇒C-s ⊢σ) (F⇒C-tm ⊢S) (F⇒C-tm ⊢t) T∈Δ
F⇒C-≈ (≈-cumu t≈t′) = ≈-cumu (F⇒C-≈ t≈t′)
F⇒C-≈ (≈-conv t≈t′ S≈T) = ≈-conv (F⇒C-≈ t≈t′) (F⇒C-≈ S≈T)
F⇒C-≈ (≈-sym t≈t′) = ≈-sym (F⇒C-≈ t≈t′)
F⇒C-≈ (≈-trans t≈t′ t′≈t″) = ≈-trans (F⇒C-≈ t≈t′) (F⇒C-≈ t′≈t″)
F⇒C-s-≈ : Γ F.⊢s σ ≈ σ′ ∶ Δ →
Γ C.⊢s σ ≈ σ′ ∶ Δ
F⇒C-s-≈ (I-≈ ⊢Γ) = I-≈ (F⇒C-⊢ ⊢Γ)
F⇒C-s-≈ (wk-≈ ⊢TΓ) = wk-≈ (F⇒C-⊢ ⊢TΓ)
F⇒C-s-≈ (∘-cong σ≈σ′ δ≈δ′) = ∘-cong (F⇒C-s-≈ σ≈σ′) (F⇒C-s-≈ δ≈δ′)
F⇒C-s-≈ (,-cong σ≈σ′ ⊢T t≈t′) = ,-cong (F⇒C-s-≈ σ≈σ′) (F⇒C-tm ⊢T) (F⇒C-≈ t≈t′)
F⇒C-s-≈ (;-cong Ψs σ≈σ′ ⊢Γ eq) = ;-cong Ψs (F⇒C-s-≈ σ≈σ′) (F⇒C-⊢ ⊢Γ) eq
F⇒C-s-≈ (I-∘ ⊢σ) = I-∘ (F⇒C-s ⊢σ)
F⇒C-s-≈ (∘-I ⊢σ) = ∘-I (F⇒C-s ⊢σ)
F⇒C-s-≈ (∘-assoc ⊢σ ⊢σ′ ⊢σ″) = ∘-assoc (F⇒C-s ⊢σ) (F⇒C-s ⊢σ′) (F⇒C-s ⊢σ″)
F⇒C-s-≈ (,-∘ ⊢σ ⊢T ⊢t ⊢δ) = ,-∘ (F⇒C-s ⊢σ) (F⇒C-tm ⊢T) (F⇒C-tm ⊢t) (F⇒C-s ⊢δ)
F⇒C-s-≈ (;-∘ Ψs ⊢σ ⊢δ ⊢Γ eq) = ;-∘ Ψs (F⇒C-s ⊢σ) (F⇒C-s ⊢δ) eq
F⇒C-s-≈ (p-, ⊢σ ⊢T ⊢t) = p-, (F⇒C-s ⊢σ) (F⇒C-tm ⊢T) (F⇒C-tm ⊢t)
F⇒C-s-≈ (,-ext ⊢σ) = ,-ext (F⇒C-s ⊢σ)
F⇒C-s-≈ (;-ext ⊢σ) = ;-ext (F⇒C-s ⊢σ)
F⇒C-s-≈ (s-≈-sym σ≈σ′) = s-≈-sym (F⇒C-s-≈ σ≈σ′)
F⇒C-s-≈ (s-≈-trans σ≈σ′ σ′≈σ″) = s-≈-trans (F⇒C-s-≈ σ≈σ′) (F⇒C-s-≈ σ′≈σ″)
F⇒C-s-≈ (s-≈-conv σ≈σ′ Δ′≈Δ) = s-≈-conv (F⇒C-s-≈ σ≈σ′) (F⇒C-⊢≈ Δ′≈Δ)
mutual
C⇒F-⊢ : C.⊢ Γ →
F.⊢ Γ
C⇒F-⊢ ⊢[] = ⊢[]
C⇒F-⊢ (⊢κ ⊢Γ) = ⊢κ (C⇒F-⊢ ⊢Γ)
C⇒F-⊢ (⊢∺ ⊢Γ ⊢T) = ⊢∺ (C⇒F-⊢ ⊢Γ) (C⇒F-tm ⊢T)
C⇒F-tm : Γ C.⊢ t ∶ T →
Γ F.⊢ t ∶ T
C⇒F-tm (N-wf i ⊢Γ) = N-wf i (C⇒F-⊢ ⊢Γ)
C⇒F-tm (Se-wf i ⊢Γ) = Se-wf i (C⇒F-⊢ ⊢Γ)
C⇒F-tm (Π-wf ⊢S ⊢T) = Π-wf (C⇒F-tm ⊢S) (C⇒F-tm ⊢T)
C⇒F-tm (□-wf ⊢T) = □-wf (C⇒F-tm ⊢T)
C⇒F-tm (vlookup ⊢Γ T∈Γ) = vlookup (C⇒F-⊢ ⊢Γ) T∈Γ
C⇒F-tm (ze-I ⊢Γ) = ze-I (C⇒F-⊢ ⊢Γ)
C⇒F-tm (su-I ⊢t) = su-I (C⇒F-tm ⊢t)
C⇒F-tm (N-E ⊢T ⊢s ⊢r ⊢t) = N-E (C⇒F-tm ⊢T) (C⇒F-tm ⊢s) (C⇒F-tm ⊢r) (C⇒F-tm ⊢t)
C⇒F-tm (Λ-I ⊢t)
with ⊢∺ ⊢Γ ⊢S ← proj₁ (presup-tm (C⇒F-tm ⊢t)) = Λ-I ⊢S (C⇒F-tm ⊢t)
C⇒F-tm (Λ-E ⊢t ⊢r)
with _ , _ , ⊢Π ← presup-tm (C⇒F-tm ⊢t) = Λ-E (lift-⊢-Se-max (proj₂ (inv-Π-wf′ ⊢Π))) (lift-⊢-Se-max′ (proj₂ (inv-Π-wf ⊢Π))) (C⇒F-tm ⊢t) (C⇒F-tm ⊢r)
C⇒F-tm (□-I ⊢t) = □-I (C⇒F-tm ⊢t)
C⇒F-tm (□-E Ψs ⊢t ⊢Γ eq)
with _ , _ , ⊢□ ← presup-tm (C⇒F-tm ⊢t) = □-E Ψs (proj₂ (inv-□-wf ⊢□)) (C⇒F-tm ⊢t) (C⇒F-⊢ ⊢Γ) eq
C⇒F-tm (t[σ] ⊢t ⊢σ) = t[σ] (C⇒F-tm ⊢t) (C⇒F-s ⊢σ)
C⇒F-tm (cumu ⊢t) = cumu (C⇒F-tm ⊢t)
C⇒F-tm (conv ⊢t T≈T′) = conv (C⇒F-tm ⊢t) (C⇒F-≈ T≈T′)
C⇒F-s : Γ C.⊢s σ ∶ Δ →
Γ F.⊢s σ ∶ Δ
C⇒F-s (s-I ⊢Γ) = s-I (C⇒F-⊢ ⊢Γ)
C⇒F-s (s-wk ⊢TΓ) = s-wk (C⇒F-⊢ ⊢TΓ)
C⇒F-s (s-∘ ⊢σ ⊢δ) = s-∘ (C⇒F-s ⊢σ) (C⇒F-s ⊢δ)
C⇒F-s (s-, ⊢σ ⊢T ⊢t) = s-, (C⇒F-s ⊢σ) (C⇒F-tm ⊢T) (C⇒F-tm ⊢t)
C⇒F-s (s-; Ψs ⊢σ ⊢Γ eq) = s-; Ψs (C⇒F-s ⊢σ) (C⇒F-⊢ ⊢Γ) eq
C⇒F-s (s-conv ⊢σ Δ′≈Δ) = s-conv (C⇒F-s ⊢σ) (C⇒F-⊢≈ Δ′≈Δ)
C⇒F-⊢≈ : C.⊢ Γ ≈ Δ →
F.⊢ Γ ≈ Δ
C⇒F-⊢≈ []-≈ = []-≈
C⇒F-⊢≈ (κ-cong Γ≈Δ) = κ-cong (C⇒F-⊢≈ Γ≈Δ)
C⇒F-⊢≈ (∺-cong Γ≈Δ T≈T′)
with T≈T′₁ ← ctxeq-≈ (C⇒F-⊢≈ Γ≈Δ) (C⇒F-≈ T≈T′)
with _ , ⊢T , _ ← presup-≈ (C⇒F-≈ T≈T′)
| _ , _ , ⊢T′ , _ ← presup-≈ T≈T′₁ = ∺-cong (C⇒F-⊢≈ Γ≈Δ) ⊢T ⊢T′ (C⇒F-≈ T≈T′) T≈T′₁
C⇒F-≈ : Γ C.⊢ t ≈ t′ ∶ T →
Γ F.⊢ t ≈ t′ ∶ T
C⇒F-≈ (N-[] i ⊢σ) = N-[] i (C⇒F-s ⊢σ)
C⇒F-≈ (Se-[] i ⊢σ) = Se-[] i (C⇒F-s ⊢σ)
C⇒F-≈ (Π-[] ⊢σ ⊢S ⊢T) = Π-[] (C⇒F-s ⊢σ) (C⇒F-tm ⊢S) (C⇒F-tm ⊢T)
C⇒F-≈ (□-[] ⊢σ ⊢T) = □-[] (C⇒F-s ⊢σ) (C⇒F-tm ⊢T)
C⇒F-≈ (Π-cong S≈S′ T≈T′)
with _ , ⊢S , _ ← presup-≈ (C⇒F-≈ S≈S′) = Π-cong ⊢S (C⇒F-≈ S≈S′) (C⇒F-≈ T≈T′)
C⇒F-≈ (□-cong T≈T′) = □-cong (C⇒F-≈ T≈T′)
C⇒F-≈ (v-≈ ⊢Γ T∈Γ) = v-≈ (C⇒F-⊢ ⊢Γ) T∈Γ
C⇒F-≈ (ze-≈ ⊢Γ) = ze-≈ (C⇒F-⊢ ⊢Γ)
C⇒F-≈ (su-cong t≈t′) = su-cong (C⇒F-≈ t≈t′)
C⇒F-≈ (rec-cong T≈T′ s≈s′ r≈r′ t≈t′)
with _ , ⊢T , _ ← presup-≈ (C⇒F-≈ T≈T′) = rec-cong ⊢T (C⇒F-≈ T≈T′) (C⇒F-≈ s≈s′) (C⇒F-≈ r≈r′) (C⇒F-≈ t≈t′)
C⇒F-≈ (Λ-cong t≈t′)
with ⊢∺ ⊢Γ ⊢S , _ ← presup-≈ (C⇒F-≈ t≈t′) = Λ-cong ⊢S (C⇒F-≈ t≈t′)
C⇒F-≈ ($-cong t≈t′ r≈r′)
with _ , _ , _ , _ , ⊢Π ← presup-≈ (C⇒F-≈ t≈t′) = $-cong (lift-⊢-Se-max (proj₂ (inv-Π-wf′ ⊢Π))) (lift-⊢-Se-max′ (proj₂ (inv-Π-wf ⊢Π))) (C⇒F-≈ t≈t′) (C⇒F-≈ r≈r′)
C⇒F-≈ (box-cong t≈t′) = box-cong (C⇒F-≈ t≈t′)
C⇒F-≈ (unbox-cong Ψs t≈t′ ⊢Γ eq)
with _ , _ , _ , _ , ⊢□ ← presup-≈ (C⇒F-≈ t≈t′) = unbox-cong Ψs (proj₂ (inv-□-wf ⊢□)) (C⇒F-≈ t≈t′) (C⇒F-⊢ ⊢Γ) eq
C⇒F-≈ ([]-cong t≈t′ σ≈σ′) = []-cong (C⇒F-≈ t≈t′) (C⇒F-s-≈ σ≈σ′)
C⇒F-≈ (ze-[] ⊢σ) = ze-[] (C⇒F-s ⊢σ)
C⇒F-≈ (su-[] ⊢σ ⊢t) = su-[] (C⇒F-s ⊢σ) (C⇒F-tm ⊢t)
C⇒F-≈ (rec-[] ⊢σ ⊢T ⊢s ⊢r ⊢t) = rec-[] (C⇒F-s ⊢σ) (C⇒F-tm ⊢T) (C⇒F-tm ⊢s) (C⇒F-tm ⊢r) (C⇒F-tm ⊢t)
C⇒F-≈ (Λ-[] ⊢σ ⊢t) = Λ-[] (C⇒F-s ⊢σ) (C⇒F-tm ⊢t)
C⇒F-≈ ($-[] ⊢σ ⊢t ⊢s)
with _ , _ , ⊢Π ← presup-tm (C⇒F-tm ⊢t) = $-[] (lift-⊢-Se-max (proj₂ (inv-Π-wf′ ⊢Π))) (lift-⊢-Se-max′ (proj₂ (inv-Π-wf ⊢Π))) (C⇒F-s ⊢σ) (C⇒F-tm ⊢t) (C⇒F-tm ⊢s)
C⇒F-≈ (box-[] ⊢σ ⊢t) = box-[] (C⇒F-s ⊢σ) (C⇒F-tm ⊢t)
C⇒F-≈ (unbox-[] Ψs ⊢t ⊢σ eq)
with _ , _ , ⊢□ ← presup-tm (C⇒F-tm ⊢t) = unbox-[] Ψs (proj₂ (inv-□-wf ⊢□)) (C⇒F-tm ⊢t) (C⇒F-s ⊢σ) eq
C⇒F-≈ (rec-β-ze ⊢T ⊢s ⊢r) = rec-β-ze (C⇒F-tm ⊢T) (C⇒F-tm ⊢s) (C⇒F-tm ⊢r)
C⇒F-≈ (rec-β-su ⊢T ⊢s ⊢r ⊢t) = rec-β-su (C⇒F-tm ⊢T) (C⇒F-tm ⊢s) (C⇒F-tm ⊢r) (C⇒F-tm ⊢t)
C⇒F-≈ (Λ-β ⊢t ⊢s)
with ⊢∺ ⊢Γ ⊢S , _ , ⊢T ← presup-tm (C⇒F-tm ⊢t) = Λ-β (lift-⊢-Se-max ⊢S) (lift-⊢-Se-max′ ⊢T) (C⇒F-tm ⊢t) (C⇒F-tm ⊢s)
C⇒F-≈ (Λ-η ⊢t)
with _ , _ , ⊢Π ← presup-tm (C⇒F-tm ⊢t) = Λ-η (lift-⊢-Se-max (proj₂ (inv-Π-wf′ ⊢Π))) (lift-⊢-Se-max′ (proj₂ (inv-Π-wf ⊢Π))) (C⇒F-tm ⊢t)
C⇒F-≈ (□-β Ψs ⊢t ⊢Γ eq)
with _ , _ , ⊢T ← presup-tm (C⇒F-tm ⊢t) = □-β Ψs ⊢T (C⇒F-tm ⊢t) (C⇒F-⊢ ⊢Γ) eq
C⇒F-≈ (□-η ⊢t)
with _ , _ , ⊢□ ← presup-tm (C⇒F-tm ⊢t) = □-η (proj₂ (inv-□-wf ⊢□)) (C⇒F-tm ⊢t)
C⇒F-≈ ([I] ⊢t) = [I] (C⇒F-tm ⊢t)
C⇒F-≈ ([wk] ⊢SΓ T∈Γ) = [wk] (C⇒F-⊢ ⊢SΓ) T∈Γ
C⇒F-≈ ([∘] ⊢δ ⊢σ ⊢t) = [∘] (C⇒F-s ⊢δ) (C⇒F-s ⊢σ) (C⇒F-tm ⊢t)
C⇒F-≈ ([,]-v-ze ⊢σ ⊢S ⊢t) = [,]-v-ze (C⇒F-s ⊢σ) (C⇒F-tm ⊢S) (C⇒F-tm ⊢t)
C⇒F-≈ ([,]-v-su ⊢σ ⊢S ⊢t T∈Δ) = [,]-v-su (C⇒F-s ⊢σ) (C⇒F-tm ⊢S) (C⇒F-tm ⊢t) T∈Δ
C⇒F-≈ (≈-cumu t≈t′) = ≈-cumu (C⇒F-≈ t≈t′)
C⇒F-≈ (≈-conv t≈t′ S≈T) = ≈-conv (C⇒F-≈ t≈t′) (C⇒F-≈ S≈T)
C⇒F-≈ (≈-sym t≈t′) = ≈-sym (C⇒F-≈ t≈t′)
C⇒F-≈ (≈-trans t≈t′ t′≈t″) = ≈-trans (C⇒F-≈ t≈t′) (C⇒F-≈ t′≈t″)
C⇒F-s-≈ : Γ C.⊢s σ ≈ σ′ ∶ Δ →
Γ F.⊢s σ ≈ σ′ ∶ Δ
C⇒F-s-≈ (I-≈ ⊢Γ) = I-≈ (C⇒F-⊢ ⊢Γ)
C⇒F-s-≈ (wk-≈ ⊢TΓ) = wk-≈ (C⇒F-⊢ ⊢TΓ)
C⇒F-s-≈ (∘-cong σ≈σ′ δ≈δ′) = ∘-cong (C⇒F-s-≈ σ≈σ′) (C⇒F-s-≈ δ≈δ′)
C⇒F-s-≈ (,-cong σ≈σ′ ⊢T t≈t′) = ,-cong (C⇒F-s-≈ σ≈σ′) (C⇒F-tm ⊢T) (C⇒F-≈ t≈t′)
C⇒F-s-≈ (;-cong Ψs σ≈σ′ ⊢Γ eq) = ;-cong Ψs (C⇒F-s-≈ σ≈σ′) (C⇒F-⊢ ⊢Γ) eq
C⇒F-s-≈ (I-∘ ⊢σ) = I-∘ (C⇒F-s ⊢σ)
C⇒F-s-≈ (∘-I ⊢σ) = ∘-I (C⇒F-s ⊢σ)
C⇒F-s-≈ (∘-assoc ⊢σ ⊢σ′ ⊢σ″) = ∘-assoc (C⇒F-s ⊢σ) (C⇒F-s ⊢σ′) (C⇒F-s ⊢σ″)
C⇒F-s-≈ (,-∘ ⊢σ ⊢T ⊢t ⊢δ) = ,-∘ (C⇒F-s ⊢σ) (C⇒F-tm ⊢T) (C⇒F-tm ⊢t) (C⇒F-s ⊢δ)
C⇒F-s-≈ (;-∘ Ψs ⊢σ ⊢δ eq) = ;-∘ Ψs (C⇒F-s ⊢σ) (C⇒F-s ⊢δ) (proj₂ (presup-s (C⇒F-s ⊢δ))) eq
C⇒F-s-≈ (p-, ⊢σ ⊢T ⊢t) = p-, (C⇒F-s ⊢σ) (C⇒F-tm ⊢T) (C⇒F-tm ⊢t)
C⇒F-s-≈ (,-ext ⊢σ) = ,-ext (C⇒F-s ⊢σ)
C⇒F-s-≈ (;-ext ⊢σ) = ;-ext (C⇒F-s ⊢σ)
C⇒F-s-≈ (s-≈-sym σ≈σ′) = s-≈-sym (C⇒F-s-≈ σ≈σ′)
C⇒F-s-≈ (s-≈-trans σ≈σ′ σ′≈σ″) = s-≈-trans (C⇒F-s-≈ σ≈σ′) (C⇒F-s-≈ σ′≈σ″)
C⇒F-s-≈ (s-≈-conv σ≈σ′ Δ′≈Δ) = s-≈-conv (C⇒F-s-≈ σ≈σ′) (C⇒F-⊢≈ Δ′≈Δ)