{-# OPTIONS --without-K --safe #-}
open import Level
open import Axiom.Extensionality.Propositional
module NonCumulative.Unascribed.Properties.Equivalence.Consequences (fext : ∀ {ℓ₁ ℓ₂} → Extensionality ℓ₁ ℓ₂) where
open import Lib
import NonCumulative.Ascribed.Consequences fext as A
import NonCumulative.Ascribed.Statics.Properties.Contexts as A
import NonCumulative.Ascribed.Statics.Presup as A
open import NonCumulative.Unascribed.Statics.Full
open import NonCumulative.Unascribed.Statics.Transfer
open import NonCumulative.Unascribed.Properties.Equivalence.Soundness fext
open import NonCumulative.Unascribed.Properties.Equivalence.Completeness
consistency : ∀ {j} → [] ⊢ t ∶ Π (Se j) (v 0) → ⊥
consistency ⊢t′
with i , Γ , t , ._ , ↝[] , t↝ , ↝Π ↝Se ↝v , ⊢t , _ ← fundamental-⊢t⇒⫢t ⊢t′
= A.consistency-gen ⊢t
presup-tm : Γ ⊢ t ∶ T →
∃ λ i → ⊢ Γ × Γ ⊢ T ∶ Se i
presup-tm ⊢t
with i , Γ′ , t′ , T′ , Γ′↝ , t′↝ , T′↝ , ⊢t′ ← U⇒A-tm ⊢t
with ⊢Γ′ , ⊢T′ ← A.presup-tm ⊢t′
with ⊢Γ ← A⇒U-⊢ ⊢Γ′ Γ′↝
with ⊢T ← A⇒U-tm ⊢T′ Γ′↝ T′↝ ↝Se
= _ , ⊢Γ , ⊢T
presup-s : Γ ⊢s σ ∶ Δ →
⊢ Γ × ⊢ Δ
presup-s ⊢σ
with Γ′ , σ′ , Δ′ , Γ′↝ , σ′↝ , Δ′↝ , ⊢σ′ ← U⇒A-s ⊢σ
with ⊢Γ′ , ⊢Δ′ ← A.presup-s ⊢σ′
with ⊢Γ ← A⇒U-⊢ ⊢Γ′ Γ′↝
with ⊢Δ ← A⇒U-⊢ ⊢Δ′ Δ′↝
= ⊢Γ , ⊢Δ
presup-⊢≈ : ⊢ Γ ≈ Δ →
⊢ Γ × ⊢ Δ
presup-⊢≈ ⊢Γ≈Δ
with Γ′ , Δ′ , Γ′↝ , Δ′↝ , Γ′≈Δ′ ← U⇒A-⊢≈ ⊢Γ≈Δ
with ⊢Γ′ , ⊢Δ′ ← A.presup-⊢≈ Γ′≈Δ′
with ⊢Γ ← A⇒U-⊢ ⊢Γ′ Γ′↝
with ⊢Δ ← A⇒U-⊢ ⊢Δ′ Δ′↝
= ⊢Γ , ⊢Δ
presup-≈ : Γ ⊢ s ≈ t ∶ T →
∃ λ i → ⊢ Γ × Γ ⊢ s ∶ T × Γ ⊢ t ∶ T × Γ ⊢ T ∶ Se i
presup-≈ s≈t
with i , Γ′ , s′ , t′ , T′ , Γ′↝ , s′↝ , t′↝ , T′↝ , s′≈t′ ← U⇒A-≈ s≈t
with ⊢Γ′ , ⊢s′ , ⊢t′ , ⊢T′ ← A.presup-≈ s′≈t′
with ⊢Γ ← A⇒U-⊢ ⊢Γ′ Γ′↝
with ⊢s ← A⇒U-tm ⊢s′ Γ′↝ s′↝ T′↝
with ⊢t ← A⇒U-tm ⊢t′ Γ′↝ t′↝ T′↝
with ⊢T ← A⇒U-tm ⊢T′ Γ′↝ T′↝ ↝Se
= _ , ⊢Γ , ⊢s , ⊢t , ⊢T
presup-s-≈ : Γ ⊢s σ ≈ τ ∶ Δ →
⊢ Γ × Γ ⊢s σ ∶ Δ × Γ ⊢s τ ∶ Δ × ⊢ Δ
presup-s-≈ σ≈τ
with Γ′ , σ′ , τ′ , Δ′ , Γ′↝ , σ′↝ , τ′↝ , Δ′↝ , σ′≈τ′ ← U⇒A-s≈ σ≈τ
with ⊢Γ′ , ⊢σ′ , ⊢τ′ , ⊢Δ′ ← A.presup-s-≈ σ′≈τ′
with ⊢Γ ← A⇒U-⊢ ⊢Γ′ Γ′↝
with ⊢σ ← A⇒U-s ⊢σ′ Γ′↝ σ′↝ Δ′↝
with ⊢τ ← A⇒U-s ⊢τ′ Γ′↝ τ′↝ Δ′↝
with ⊢Δ ← A⇒U-⊢ ⊢Δ′ Δ′↝
= ⊢Γ , ⊢σ , ⊢τ , ⊢Δ