{-# OPTIONS --without-K --safe #-} open import Level open import Axiom.Extensionality.Propositional module NonCumulative.Unascribed.Properties.NbE.Completeness (fext : ∀ {ℓ₁ ℓ₂} → Extensionality ℓ₁ ℓ₂) where open import Lib hiding (lookup) open import NonCumulative.Ascribed.Statics.Full as A open import NonCumulative.Ascribed.Semantics.Domain as A open import NonCumulative.Ascribed.Semantics.Evaluation as A open import NonCumulative.Ascribed.Semantics.Readback as A open import NonCumulative.Ascribed.Completeness fext as ANS open import NonCumulative.Unascribed.Statics.Full as U open import NonCumulative.Unascribed.Semantics.Domain as U open import NonCumulative.Unascribed.Semantics.Evaluation as U open import NonCumulative.Unascribed.Semantics.Readback as U open import NonCumulative.Unascribed.Statics.Transfer open import NonCumulative.Unascribed.Properties.Equivalence.Soundness fext as US open import NonCumulative.Unascribed.Properties.Equivalence.Completeness as UC open import NonCumulative.Unascribed.Properties.NbE.Totality fext as UT Nf⇒Exp↝⌊⌋ : ∀ w → A.Nf⇒Exp w ↝ U.Nf⇒Exp ⌊ w ⌋ⁿᶠ Nf⇒Exp↝⌊⌋ w rewrite (⌊⌋ⁿᶠ-Nf⇒Exp-comm w) = ⌊⌋⇒↝ unbe-completeness : U.Γ′ ⊢ U.t′ ≈ U.s′ ∶ U.T′ → ∃ λ w′ → U.NbE U.Γ′ U.t′ U.T′ w′ × U.NbE U.Γ′ U.s′ U.T′ w′ unbe-completeness {Γ′} {t′} {s′} {T′} s′≈t′ with Γ , t , s , i , T , Γ↝ , t↝ , s↝ , T↝ , t≈s ← U⇒A-≈ s′≈t′ with w , nbet , nbes ← completeness t≈s with nbet′ ← NbE-⌊⌋-total nbet | nbes′ ← NbE-⌊⌋-total nbes = _ , helpert , helpers where helpert : U.NbE Γ′ t′ T′ ⌊ w ⌋ⁿᶠ helpert rewrite (sym (↝⇒⌊⌋ t↝)) rewrite (sym (↝⇒⌊⌋ T↝)) rewrite (sym (↝[]⇒[⌊⌋] Γ↝)) = nbet′ helpers : U.NbE Γ′ s′ T′ ⌊ w ⌋ⁿᶠ helpers rewrite (sym (↝⇒⌊⌋ s↝)) rewrite (sym (↝⇒⌊⌋ T↝)) rewrite (sym (↝[]⇒[⌊⌋] Γ↝)) = nbes′