------------------------------------------------------------------------
-- The Agda standard library
--
-- Some derivable properties
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

open import Algebra

module Algebra.Properties.DistributiveLattice
         {dl₁ dl₂} (DL : DistributiveLattice dl₁ dl₂)
         where

open DistributiveLattice DL
import Algebra.Properties.Lattice
private
  open module L = Algebra.Properties.Lattice lattice public
    hiding (replace-equality)
open import Algebra.Structures
open import Algebra.FunctionProperties _≈_
open import Relation.Binary
open import Relation.Binary.Reasoning.Setoid setoid
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (_⇔_; module Equivalence)
open import Data.Product using (_,_)

∨-∧-distribˡ : _∨_ DistributesOverˡ _∧_
∨-∧-distribˡ x y z = begin
  x  y  z          ≈⟨ ∨-comm _ _ 
  y  z  x          ≈⟨ ∨-∧-distribʳ _ _ _ 
  (y  x)  (z  x)  ≈⟨ ∨-comm _ _  ∧-cong  ∨-comm _ _ 
  (x  y)  (x  z)  

∨-∧-distrib : _∨_ DistributesOver _∧_
∨-∧-distrib = ∨-∧-distribˡ , ∨-∧-distribʳ

∧-∨-distribˡ : _∧_ DistributesOverˡ _∨_
∧-∨-distribˡ x y z = begin
  x  (y  z)                ≈⟨ ∧-congˡ $ sym (∧-absorbs-∨ _ _) 
  (x  (x  y))  (y  z)    ≈⟨ ∧-congˡ $ ∧-congʳ $ ∨-comm _ _ 
  (x  (y  x))  (y  z)    ≈⟨ ∧-assoc _ _ _ 
  x  ((y  x)  (y  z))    ≈⟨ ∧-congʳ $ sym (∨-∧-distribˡ _ _ _) 
  x  (y  x  z)            ≈⟨ ∧-congˡ $ sym (∨-absorbs-∧ _ _) 
  (x  x  z)  (y  x  z)  ≈⟨ sym $ ∨-∧-distribʳ _ _ _ 
  x  y  x  z              

∧-∨-distribʳ : _∧_ DistributesOverʳ _∨_
∧-∨-distribʳ x y z = begin
  (y  z)  x    ≈⟨ ∧-comm _ _ 
  x  (y  z)    ≈⟨ ∧-∨-distribˡ _ _ _ 
  x  y  x  z  ≈⟨ ∧-comm _ _  ∨-cong  ∧-comm _ _ 
  y  x  z  x  

∧-∨-distrib : _∧_ DistributesOver _∨_
∧-∨-distrib = ∧-∨-distribˡ , ∧-∨-distribʳ

-- The dual construction is also a distributive lattice.

∧-∨-isDistributiveLattice : IsDistributiveLattice _≈_ _∧_ _∨_
∧-∨-isDistributiveLattice = record
  { isLattice    = ∧-∨-isLattice
  ; ∨-∧-distribʳ = ∧-∨-distribʳ
  }

∧-∨-distributiveLattice : DistributiveLattice _ _
∧-∨-distributiveLattice = record
  { _∧_                   = _∨_
  ; _∨_                   = _∧_
  ; isDistributiveLattice = ∧-∨-isDistributiveLattice
  }

-- One can replace the underlying equality with an equivalent one.

replace-equality :
  {_≈′_ : Rel Carrier dl₂} 
  (∀ {x y}  x  y  (x ≈′ y))  DistributiveLattice _ _
replace-equality {_≈′_} ≈⇔≈′ = record
  { _≈_                   = _≈′_
  ; _∧_                   = _∧_
  ; _∨_                   = _∨_
  ; isDistributiveLattice = record
    { isLattice    = Lattice.isLattice (L.replace-equality ≈⇔≈′)
    ; ∨-∧-distribʳ = λ x y z  to ⟨$⟩ ∨-∧-distribʳ x y z
    }
  } where open module E {x y} = Equivalence (≈⇔≈′ {x} {y})