{-# OPTIONS --without-K --safe #-}
module Data.List.Membership.Propositional.Properties where
open import Algebra using (Op₂; Selective)
open import Category.Monad using (RawMonad)
open import Data.Bool.Base using (Bool; false; true; T)
open import Data.Fin.Base using (Fin)
open import Data.List.Base as List
open import Data.List.Relation.Unary.Any as Any using (Any; here; there)
open import Data.List.Relation.Unary.Any.Properties
open import Data.List.Membership.Propositional
import Data.List.Membership.Setoid.Properties as Membershipₛ
open import Data.List.Relation.Binary.Equality.Propositional
using (_≋_; ≡⇒≋; ≋⇒≡)
open import Data.List.Categorical using (monad)
open import Data.Nat.Base using (ℕ; zero; suc; pred; s≤s; _≤_; _<_; _≤ᵇ_)
open import Data.Nat.Properties
open import Data.Product hiding (map)
open import Data.Product.Function.NonDependent.Propositional using (_×-cong_)
import Data.Product.Function.Dependent.Propositional as Σ
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂)
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence using (module Equivalence)
open import Function.Injection using (Injection; Injective; _↣_)
open import Function.Inverse as Inv using (_↔_; module Inverse)
import Function.Related as Related
open import Function.Related.TypeIsomorphisms
open import Level using (Level)
open import Relation.Binary as B hiding (Decidable)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl; sym; trans; cong; subst; →-to-⟶; _≗_)
import Relation.Binary.Properties.DecTotalOrder as DTOProperties
open import Relation.Unary using (_⟨×⟩_; Decidable)
import Relation.Nullary.Reflects as Reflects
open import Relation.Nullary.Reflects using (invert)
open import Relation.Nullary using (¬_; Dec; does; yes; no; _because_)
open import Relation.Nullary.Negation
private
open module ListMonad {ℓ} = RawMonad (monad {ℓ = ℓ})
variable
ℓ : Level
A B C : Set ℓ
open import Data.List.Membership.Propositional.Properties.Core public
∈-resp-≋ : ∀ {x : A} → (x ∈_) Respects _≋_
∈-resp-≋ = Membershipₛ.∈-resp-≋ (P.setoid _)
∉-resp-≋ : ∀ {x : A} → (x ∉_) Respects _≋_
∉-resp-≋ = Membershipₛ.∉-resp-≋ (P.setoid _)
mapWith∈-cong : ∀ (xs : List A) → (f g : ∀ {x} → x ∈ xs → B) →
(∀ {x} → (x∈xs : x ∈ xs) → f x∈xs ≡ g x∈xs) →
mapWith∈ xs f ≡ mapWith∈ xs g
mapWith∈-cong [] f g cong = refl
mapWith∈-cong (x ∷ xs) f g cong = P.cong₂ _∷_ (cong (here refl))
(mapWith∈-cong xs (f ∘ there) (g ∘ there) (cong ∘ there))
mapWith∈≗map : ∀ (f : A → B) xs → mapWith∈ xs (λ {x} _ → f x) ≡ map f xs
mapWith∈≗map f xs =
≋⇒≡ (Membershipₛ.mapWith∈≗map (P.setoid _) (P.setoid _) f xs)
module _ (f : A → B) where
∈-map⁺ : ∀ {x xs} → x ∈ xs → f x ∈ map f xs
∈-map⁺ = Membershipₛ.∈-map⁺ (P.setoid A) (P.setoid B) (P.cong f)
∈-map⁻ : ∀ {y xs} → y ∈ map f xs → ∃ λ x → x ∈ xs × y ≡ f x
∈-map⁻ = Membershipₛ.∈-map⁻ (P.setoid A) (P.setoid B)
map-∈↔ : ∀ {y xs} → (∃ λ x → x ∈ xs × y ≡ f x) ↔ y ∈ map f xs
map-∈↔ {y} {xs} =
(∃ λ x → x ∈ xs × y ≡ f x) ↔⟨ Any↔ ⟩
Any (λ x → y ≡ f x) xs ↔⟨ map↔ ⟩
y ∈ List.map f xs ∎
where open Related.EquationalReasoning
module _ {v : A} where
∈-++⁺ˡ : ∀ {xs ys} → v ∈ xs → v ∈ xs ++ ys
∈-++⁺ˡ = Membershipₛ.∈-++⁺ˡ (P.setoid A)
∈-++⁺ʳ : ∀ xs {ys} → v ∈ ys → v ∈ xs ++ ys
∈-++⁺ʳ = Membershipₛ.∈-++⁺ʳ (P.setoid A)
∈-++⁻ : ∀ xs {ys} → v ∈ xs ++ ys → (v ∈ xs) ⊎ (v ∈ ys)
∈-++⁻ = Membershipₛ.∈-++⁻ (P.setoid A)
∈-insert : ∀ xs {ys} → v ∈ xs ++ [ v ] ++ ys
∈-insert xs = Membershipₛ.∈-insert (P.setoid A) xs refl
∈-∃++ : ∀ {xs} → v ∈ xs → ∃₂ λ ys zs → xs ≡ ys ++ [ v ] ++ zs
∈-∃++ v∈xs with Membershipₛ.∈-∃++ (P.setoid A) v∈xs
... | ys , zs , _ , refl , eq = ys , zs , ≋⇒≡ eq
module _ {v : A} where
∈-concat⁺ : ∀ {xss} → Any (v ∈_) xss → v ∈ concat xss
∈-concat⁺ = Membershipₛ.∈-concat⁺ (P.setoid A)
∈-concat⁻ : ∀ xss → v ∈ concat xss → Any (v ∈_) xss
∈-concat⁻ = Membershipₛ.∈-concat⁻ (P.setoid A)
∈-concat⁺′ : ∀ {vs xss} → v ∈ vs → vs ∈ xss → v ∈ concat xss
∈-concat⁺′ v∈vs vs∈xss =
Membershipₛ.∈-concat⁺′ (P.setoid A) v∈vs (Any.map ≡⇒≋ vs∈xss)
∈-concat⁻′ : ∀ xss → v ∈ concat xss → ∃ λ xs → v ∈ xs × xs ∈ xss
∈-concat⁻′ xss v∈c with Membershipₛ.∈-concat⁻′ (P.setoid A) xss v∈c
... | xs , v∈xs , xs∈xss = xs , v∈xs , Any.map ≋⇒≡ xs∈xss
concat-∈↔ : ∀ {xss : List (List A)} →
(∃ λ xs → v ∈ xs × xs ∈ xss) ↔ v ∈ concat xss
concat-∈↔ {xss} =
(∃ λ xs → v ∈ xs × xs ∈ xss) ↔⟨ Σ.cong Inv.id $ ×-comm _ _ ⟩
(∃ λ xs → xs ∈ xss × v ∈ xs) ↔⟨ Any↔ ⟩
Any (Any (v ≡_)) xss ↔⟨ concat↔ ⟩
v ∈ concat xss ∎
where open Related.EquationalReasoning
module _ (f : A → B → C) where
∈-cartesianProductWith⁺ : ∀ {xs ys a b} → a ∈ xs → b ∈ ys →
f a b ∈ cartesianProductWith f xs ys
∈-cartesianProductWith⁺ = Membershipₛ.∈-cartesianProductWith⁺
(P.setoid A) (P.setoid B) (P.setoid C) (P.cong₂ f)
∈-cartesianProductWith⁻ : ∀ xs ys {v} → v ∈ cartesianProductWith f xs ys →
∃₂ λ a b → a ∈ xs × b ∈ ys × v ≡ f a b
∈-cartesianProductWith⁻ = Membershipₛ.∈-cartesianProductWith⁻
(P.setoid A) (P.setoid B) (P.setoid C) f
∈-cartesianProduct⁺ : ∀ {x : A} {y : B} {xs ys} → x ∈ xs → y ∈ ys →
(x , y) ∈ cartesianProduct xs ys
∈-cartesianProduct⁺ = ∈-cartesianProductWith⁺ _,_
∈-cartesianProduct⁻ : ∀ xs ys {xy@(x , y) : A × B} →
xy ∈ cartesianProduct xs ys → x ∈ xs × y ∈ ys
∈-cartesianProduct⁻ xs ys xy∈p[xs,ys] with ∈-cartesianProductWith⁻ _,_ xs ys xy∈p[xs,ys]
... | (x , y , x∈xs , y∈ys , refl) = x∈xs , y∈ys
module _ (f : ℕ → A) where
∈-applyUpTo⁺ : ∀ {i n} → i < n → f i ∈ applyUpTo f n
∈-applyUpTo⁺ = Membershipₛ.∈-applyUpTo⁺ (P.setoid _) f
∈-applyUpTo⁻ : ∀ {v n} → v ∈ applyUpTo f n →
∃ λ i → i < n × v ≡ f i
∈-applyUpTo⁻ = Membershipₛ.∈-applyUpTo⁻ (P.setoid _) f
∈-upTo⁺ : ∀ {n i} → i < n → i ∈ upTo n
∈-upTo⁺ = ∈-applyUpTo⁺ id
∈-upTo⁻ : ∀ {n i} → i ∈ upTo n → i < n
∈-upTo⁻ p with ∈-applyUpTo⁻ id p
... | _ , i<n , refl = i<n
module _ (f : ℕ → A) where
∈-applyDownFrom⁺ : ∀ {i n} → i < n → f i ∈ applyDownFrom f n
∈-applyDownFrom⁺ = Membershipₛ.∈-applyDownFrom⁺ (P.setoid _) f
∈-applyDownFrom⁻ : ∀ {v n} → v ∈ applyDownFrom f n →
∃ λ i → i < n × v ≡ f i
∈-applyDownFrom⁻ = Membershipₛ.∈-applyDownFrom⁻ (P.setoid _) f
∈-downFrom⁺ : ∀ {n i} → i < n → i ∈ downFrom n
∈-downFrom⁺ i<n = ∈-applyDownFrom⁺ id i<n
∈-downFrom⁻ : ∀ {n i} → i ∈ downFrom n → i < n
∈-downFrom⁻ p with ∈-applyDownFrom⁻ id p
... | _ , i<n , refl = i<n
module _ {n} {f : Fin n → A} where
∈-tabulate⁺ : ∀ i → f i ∈ tabulate f
∈-tabulate⁺ = Membershipₛ.∈-tabulate⁺ (P.setoid _)
∈-tabulate⁻ : ∀ {v} → v ∈ tabulate f → ∃ λ i → v ≡ f i
∈-tabulate⁻ = Membershipₛ.∈-tabulate⁻ (P.setoid _)
module _ {p} {P : A → Set p} (P? : Decidable P) where
∈-filter⁺ : ∀ {x xs} → x ∈ xs → P x → x ∈ filter P? xs
∈-filter⁺ = Membershipₛ.∈-filter⁺ (P.setoid A) P? (P.subst P)
∈-filter⁻ : ∀ {v xs} → v ∈ filter P? xs → v ∈ xs × P v
∈-filter⁻ = Membershipₛ.∈-filter⁻ (P.setoid A) P? (P.subst P)
module _ {r} {R : Rel A r} (R? : B.Decidable R) where
∈-derun⁻ : ∀ xs {z} → z ∈ derun R? xs → z ∈ xs
∈-derun⁻ xs z∈derun[R,xs] = Membershipₛ.∈-derun⁻ (P.setoid A) R? xs z∈derun[R,xs]
∈-deduplicate⁻ : ∀ xs {z} → z ∈ deduplicate R? xs → z ∈ xs
∈-deduplicate⁻ xs z∈dedup[R,xs] = Membershipₛ.∈-deduplicate⁻ (P.setoid A) R? xs z∈dedup[R,xs]
module _ (_≈?_ : B.Decidable {A = A} _≡_) where
∈-derun⁺ : ∀ {xs z} → z ∈ xs → z ∈ derun _≈?_ xs
∈-derun⁺ z∈xs = Membershipₛ.∈-derun⁺ (P.setoid A) _≈?_ (flip trans) z∈xs
∈-deduplicate⁺ : ∀ {xs z} → z ∈ xs → z ∈ deduplicate _≈?_ xs
∈-deduplicate⁺ z∈xs = Membershipₛ.∈-deduplicate⁺ (P.setoid A) _≈?_ (λ c≡b a≡b → trans a≡b (sym c≡b)) z∈xs
>>=-∈↔ : ∀ {xs} {f : A → List B} {y} →
(∃ λ x → x ∈ xs × y ∈ f x) ↔ y ∈ (xs >>= f)
>>=-∈↔ {xs = xs} {f} {y} =
(∃ λ x → x ∈ xs × y ∈ f x) ↔⟨ Any↔ ⟩
Any (Any (y ≡_) ∘ f) xs ↔⟨ >>=↔ ⟩
y ∈ (xs >>= f) ∎
where open Related.EquationalReasoning
⊛-∈↔ : ∀ (fs : List (A → B)) {xs y} →
(∃₂ λ f x → f ∈ fs × x ∈ xs × y ≡ f x) ↔ y ∈ (fs ⊛ xs)
⊛-∈↔ fs {xs} {y} =
(∃₂ λ f x → f ∈ fs × x ∈ xs × y ≡ f x) ↔⟨ Σ.cong Inv.id (∃∃↔∃∃ _) ⟩
(∃ λ f → f ∈ fs × ∃ λ x → x ∈ xs × y ≡ f x) ↔⟨ Σ.cong Inv.id ((_ ∎) ⟨ _×-cong_ ⟩ Any↔) ⟩
(∃ λ f → f ∈ fs × Any (_≡_ y ∘ f) xs) ↔⟨ Any↔ ⟩
Any (λ f → Any (_≡_ y ∘ f) xs) fs ↔⟨ ⊛↔ ⟩
y ∈ (fs ⊛ xs) ∎
where open Related.EquationalReasoning
⊗-∈↔ : ∀ {xs ys} {x : A} {y : B} →
(x ∈ xs × y ∈ ys) ↔ (x , y) ∈ (xs ⊗ ys)
⊗-∈↔ {xs = xs} {ys} {x} {y} =
(x ∈ xs × y ∈ ys) ↔⟨ ⊗↔′ ⟩
Any (x ≡_ ⟨×⟩ y ≡_) (xs ⊗ ys) ↔⟨ Any-cong ×-≡×≡↔≡,≡ (_ ∎) ⟩
(x , y) ∈ (xs ⊗ ys) ∎
where
open Related.EquationalReasoning
∈-length : ∀ {x : A} {xs} → x ∈ xs → 1 ≤ length xs
∈-length = Membershipₛ.∈-length (P.setoid _)
∈-lookup : ∀ {xs : List A} i → lookup xs i ∈ xs
∈-lookup {xs = xs} i = Membershipₛ.∈-lookup (P.setoid _) xs i
module _ {_•_ : Op₂ A} where
foldr-selective : Selective _≡_ _•_ → ∀ e xs →
(foldr _•_ e xs ≡ e) ⊎ (foldr _•_ e xs ∈ xs)
foldr-selective = Membershipₛ.foldr-selective (P.setoid A)
∈-allFin : ∀ {n} (k : Fin n) → k ∈ allFin n
∈-allFin = ∈-tabulate⁺
[]∈inits : ∀ {a} {A : Set a} (as : List A) → [] ∈ inits as
[]∈inits [] = here refl
[]∈inits (a ∷ as) = here refl
finite : (f : ℕ ↣ A) → ∀ xs → ¬ (∀ i → Injection.to f ⟨$⟩ i ∈ xs)
finite inj [] fᵢ∈[] = ¬Any[] (fᵢ∈[] 0)
finite inj (x ∷ xs) fᵢ∈x∷xs = excluded-middle helper
where
open Injection inj renaming (injective to f-inj)
f : ℕ → _
f = to ⟨$⟩_
not-x : ∀ {i} → f i ≢ x → f i ∈ xs
not-x {i} fᵢ≢x with fᵢ∈x∷xs i
... | here fᵢ≡x = contradiction fᵢ≡x fᵢ≢x
... | there fᵢ∈xs = fᵢ∈xs
helper : ¬ Dec (∃ λ i → f i ≡ x)
helper (no fᵢ≢x) = finite inj xs (λ i → not-x (fᵢ≢x ∘ _,_ i))
helper (yes (i , fᵢ≡x)) = finite f′-inj xs f′ⱼ∈xs
where
f′ : ℕ → _
f′ j with does (i ≤? j)
... | true = f (suc j)
... | false = f j
∈-if-not-i : ∀ {j} → i ≢ j → f j ∈ xs
∈-if-not-i i≢j = not-x (i≢j ∘ f-inj ∘ trans fᵢ≡x ∘ sym)
lemma : ∀ {k j} → i ≤ j → ¬ (i ≤ k) → suc j ≢ k
lemma i≤j i≰1+j refl = i≰1+j (≤-step i≤j)
f′ⱼ∈xs : ∀ j → f′ j ∈ xs
f′ⱼ∈xs j with i ≤ᵇ j | Reflects.invert (≤ᵇ-reflects-≤ i j)
... | true | p = ∈-if-not-i (<⇒≢ (s≤s p))
... | false | p = ∈-if-not-i (<⇒≢ (≰⇒> p) ∘ sym)
f′-injective′ : Injective {B = P.setoid _} (→-to-⟶ f′)
f′-injective′ {j} {k} eq with i ≤ᵇ j | Reflects.invert (≤ᵇ-reflects-≤ i j)
| i ≤ᵇ k | Reflects.invert (≤ᵇ-reflects-≤ i k)
... | true | p | true | q = P.cong pred (f-inj eq)
... | true | p | false | q = contradiction (f-inj eq) (lemma p q)
... | false | p | true | q = contradiction (f-inj eq) (lemma q p ∘ sym)
... | false | p | false | q = f-inj eq
f′-inj = record
{ to = →-to-⟶ f′
; injective = f′-injective′
}
there-injective-≢∈ : ∀ {xs} {x y z : A} {x∈xs : x ∈ xs} {y∈xs : y ∈ xs} →
there {x = z} x∈xs ≢∈ there y∈xs →
x∈xs ≢∈ y∈xs
there-injective-≢∈ neq refl eq = neq refl (P.cong there eq)