------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of non-empty lists ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.NonEmpty.Properties where open import Level using (Level) open import Category.Monad open import Data.Nat open import Data.Nat.Properties open import Data.Maybe.Properties using (just-injective) open import Data.List.Base as List using (List; []; _∷_; _++_) open import Data.List.Categorical using () renaming (monad to listMonad) open import Data.List.NonEmpty.Categorical using () renaming (monad to list⁺Monad) open import Data.List.NonEmpty as List⁺ import Data.List.Properties as Listₚ open import Function open import Relation.Binary.PropositionalEquality open ≡-Reasoning private open module LMo {a} = RawMonad {f = a} listMonad using () renaming (_>>=_ to _⋆>>=_) open module L⁺Mo {a} = RawMonad {f = a} list⁺Monad variable a : Level A B C : Set a η : ∀ {a} {A : Set a} (xs : List⁺ A) → head xs ∷ tail xs ≡ List⁺.toList xs η _ = refl toList-fromList : ∀ {a} {A : Set a} x (xs : List A) → x ∷ xs ≡ List⁺.toList (x ∷ xs) toList-fromList _ _ = refl toList-⁺++ : ∀ {a} {A : Set a} (xs : List⁺ A) ys → List⁺.toList xs ++ ys ≡ List⁺.toList (xs ⁺++ ys) toList-⁺++ _ _ = refl toList-⁺++⁺ : ∀ {a} {A : Set a} (xs ys : List⁺ A) → List⁺.toList xs ++ List⁺.toList ys ≡ List⁺.toList (xs ⁺++⁺ ys) toList-⁺++⁺ _ _ = refl toList->>= : ∀ {ℓ} {A B : Set ℓ} (f : A → List⁺ B) (xs : List⁺ A) → (List⁺.toList xs ⋆>>= List⁺.toList ∘ f) ≡ (List⁺.toList (xs >>= f)) toList->>= f (x ∷ xs) = begin List.concat (List.map (List⁺.toList ∘ f) (x ∷ xs)) ≡⟨ cong List.concat $ Listₚ.map-compose {g = List⁺.toList} (x ∷ xs) ⟩ List.concat (List.map List⁺.toList (List.map f (x ∷ xs))) ∎ length-++⁺ : (xs : List A) (ys : List⁺ A) → length (xs ++⁺ ys) ≡ List.length xs + length ys length-++⁺ [] ys = refl length-++⁺ (x ∷ xs) ys rewrite length-++⁺ xs ys = refl length-++⁺-tail : (xs : List A) (ys : List⁺ A) → length (xs ++⁺ ys) ≡ suc (List.length xs + List.length (List⁺.tail ys)) length-++⁺-tail [] ys = refl length-++⁺-tail (x ∷ xs) ys rewrite length-++⁺-tail xs ys = refl ++-++⁺ : (xs : List A) → ∀ {ys zs} → (xs ++ ys) ++⁺ zs ≡ xs ++⁺ ys ++⁺ zs ++-++⁺ [] = refl ++-++⁺ (x ∷ l) = cong (x ∷_) (cong toList (++-++⁺ l)) ++⁺-cancelˡ′ : ∀ xs ys {zs zs′ : List⁺ A} → xs ++⁺ zs ≡ ys ++⁺ zs′ → List.length xs ≡ List.length ys → zs ≡ zs′ ++⁺-cancelˡ′ [] [] eq eqxs = eq ++⁺-cancelˡ′ (x ∷ xs) (y ∷ ys) eq eql = ++⁺-cancelˡ′ xs ys (just-injective (cong fromList (cong List⁺.tail eq))) (suc-injective eql) ++⁺-cancelˡ : ∀ xs {ys zs : List⁺ A} → xs ++⁺ ys ≡ xs ++⁺ zs → ys ≡ zs ++⁺-cancelˡ xs eq = ++⁺-cancelˡ′ xs xs eq refl drop-+-++⁺ : ∀ (xs : List A) ys → drop+ (List.length xs) (xs ++⁺ ys) ≡ ys drop-+-++⁺ [] ys = refl drop-+-++⁺ (x ∷ xs) ys = drop-+-++⁺ xs ys map-++⁺-commute : ∀ (f : A → B) xs ys → map f (xs ++⁺ ys) ≡ List.map f xs ++⁺ map f ys map-++⁺-commute f [] ys = refl map-++⁺-commute f (x ∷ xs) ys = cong (λ zs → f x ∷ toList zs) (map-++⁺-commute f xs ys) length-map : ∀ (f : A → B) xs → length (map f xs) ≡ length xs length-map f (_ ∷ xs) = cong suc (Listₚ.length-map f xs) map-cong : ∀ {f g : A → B} → f ≗ g → map f ≗ map g map-cong f≗g (x ∷ xs) = cong₂ _∷_ (f≗g x) (Listₚ.map-cong f≗g xs) map-compose : {g : B → C} {f : A → B} → map (g ∘ f) ≗ map g ∘ map f map-compose (x ∷ xs) = cong (_ ∷_) (Listₚ.map-compose xs)