{-# OPTIONS --without-K --safe #-}
open import Level
open import Axiom.Extensionality.Propositional
module MLTT.Completeness (fext : Extensionality 0ℓ (suc 0ℓ)) where
open import Lib
open import MLTT.Completeness.Fundamental fext
open import MLTT.Semantics.Domain
open import MLTT.Semantics.Evaluation
open import MLTT.Semantics.Properties.PER fext
open import MLTT.Semantics.Readback
open import MLTT.Semantics.Realizability fext
open import MLTT.Statics
completeness : Γ ⊢ t ≈ t′ ∶ T →
∃ λ w → NbE Γ t T w × NbE Γ t′ T w
completeness {Γ} t≈t′
with ⊨Γ , _ , t≈t′ ← fundamental-t≈t′ t≈t′
with _ , _ , ↘ρ , ↘ρ′ , ρ≈ρ′ ← InitEnvs-related ⊨Γ
with t≈t′ ρ≈ρ′
... | record { ⟦T⟧ = ⟦T⟧ ; ⟦T′⟧ = ⟦T′⟧ ; ↘⟦T⟧ = ↘⟦T⟧ ; ↘⟦T′⟧ = ↘⟦T′⟧ ; T≈T′ = T≈T′ }
, record { ⟦t⟧ = ⟦t⟧ ; ⟦t′⟧ = ⟦t′⟧ ; ↘⟦t⟧ = ↘⟦t⟧ ; ↘⟦t′⟧ = ↘⟦t′⟧ ; t≈t′ = t≈t′ }
with _ , ↓⟦t⟧ , ↓⟦t′⟧ ← El⊆Top T≈T′ t≈t′ (len Γ)
= _
, record
{ init = ↘ρ
; nbe = record
{ ↘⟦t⟧ = ↘⟦t⟧
; ↘⟦T⟧ = ↘⟦T⟧
; ↓⟦t⟧ = ↓⟦t⟧
}
}
, record
{ init = ↘ρ′
; nbe = record
{ ↘⟦t⟧ = ↘⟦t′⟧
; ↘⟦T⟧ = ↘⟦T′⟧
; ↓⟦t⟧ = ↓⟦t′⟧
}
}