{-# OPTIONS --without-K --safe #-}
open import Level using (0ℓ)
open import Axiom.Extensionality.Propositional
module Unbox.PER (fext : Extensionality 0ℓ 0ℓ) where
open import Lib hiding (lookup)
open import Unbox.Statics
open import Unbox.Semantics
open import Unbox.SemanticProps fext
open import Data.Nat.Properties as Nₚ
open import Relation.Binary
using ( Rel
; IsPartialEquivalence
; PartialSetoid
; Symmetric
; Transitive)
Ty : Set₁
Ty = Rel D _
Evs : Set₁
Evs = Rel Envs _
Bot : Dn → Dn → Set
Bot c c′ = ∀ ns (κ : UMoT) → ∃ λ u → Re ns - c [ κ ] ↘ u × Re ns - c′ [ κ ] ↘ u
Top : Df → Df → Set
Top d d′ = ∀ ns (κ : UMoT) → ∃ λ w → Rf ns - d [ κ ] ↘ w × Rf ns - d′ [ κ ] ↘ w
Bot-sym : Symmetric Bot
Bot-sym ⊥ ns κ
with ⊥ ns κ
... | u , ↘u , ↘u′ = u , ↘u′ , ↘u
Bot-trans : Transitive Bot
Bot-trans ⊥₁ ⊥₂ ns κ
with ⊥₁ ns κ | ⊥₂ ns κ
... | u , ↘u , ↘u′ | u′ , ↘u₁ , ↘u₂
rewrite Re-det ↘u′ ↘u₁ = u′ , ↘u , ↘u₂
BotIsPER : IsPartialEquivalence Bot
BotIsPER = record
{ sym = Bot-sym
; trans = Bot-trans
}
Top-sym : Symmetric Top
Top-sym ⊤ ns κ
with ⊤ ns κ
... | w , ↘w , ↘w′ = w , ↘w′ , ↘w
Top-trans : Transitive Top
Top-trans ⊤₁ ⊤₂ ns κ
with ⊤₁ ns κ | ⊤₂ ns κ
... | w , ↘w , ↘w′ | w′ , ↘w₁ , ↘w₂
rewrite Rf-det ↘w′ ↘w₁ = w′ , ↘w , ↘w₂
TopIsPER : IsPartialEquivalence Top
TopIsPER = record
{ sym = Top-sym
; trans = Top-trans
}
data BotT T : Ty where
bne : c ≈ c′ ∈ Bot → ↑ T c ≈ ↑ T c′ ∈ BotT T
record ap-equiv (f a f′ a′ : D) (T : Ty) : Set where
field
fa fa′ : D
↘fa : f ∙ a ↘ fa
↘fa′ : f′ ∙ a′ ↘ fa′
faTfa′ : T fa fa′
record unbox-equiv k (a b : D) (T : Ty) : Set where
field
ua ub : D
↘ua : unbox∙ k , a ↘ ua
↘ub : unbox∙ k , b ↘ ub
uaTub : T ua ub
⟦_⟧T : Typ → Ty
⟦ B ⟧T = BotT B
⟦ S ⟶ T ⟧T a b = ∀ {a′ b′} (κ : UMoT) → a′ ≈ b′ ∈ ⟦ S ⟧T → ap-equiv (a [ κ ]) a′ (b [ κ ]) b′ ⟦ T ⟧T
⟦ □ T ⟧T a b = ∀ k (κ : UMoT) → unbox-equiv k (a [ κ ]) (b [ κ ]) ⟦ T ⟧T
⟦⟧-sym : ∀ T → Symmetric ⟦ T ⟧T
⟦⟧-sym B (bne c≈c′) = bne (Bot-sym c≈c′)
⟦⟧-sym (S ⟶ T) f≈f′ κ a≈b = record
{ fa = fa′
; fa′ = fa
; ↘fa = ↘fa′
; ↘fa′ = ↘fa
; faTfa′ = ⟦⟧-sym T faTfa′
}
where open ap-equiv (f≈f′ κ (⟦⟧-sym S a≈b))
⟦⟧-sym (□ T) a≈b k κ = record
{ ua = ub
; ub = ua
; ↘ua = ↘ub
; ↘ub = ↘ua
; uaTub = ⟦⟧-sym T uaTub
}
where open unbox-equiv (a≈b k κ)
⟦⟧-trans : ∀ T → Transitive ⟦ T ⟧T
⟦⟧-trans B (bne c≈c′) (bne c′≈c″) = bne (Bot-trans c≈c′ c′≈c″)
⟦⟧-trans (S ⟶ T) f≈f′ f≈f″ κ a≈b = record
{ fa = ae.fa
; fa′ = ae′.fa′
; ↘fa = ae.↘fa
; ↘fa′ = ae′.↘fa′
; faTfa′ = ⟦⟧-trans T ae.faTfa′ (subst (λ a′ → ⟦ T ⟧T a′ _) (ap-det ae′.↘fa ae.↘fa′) ae′.faTfa′)
}
where module ae = ap-equiv (f≈f′ κ (⟦⟧-trans S a≈b (⟦⟧-sym S a≈b)))
module ae′ = ap-equiv (f≈f″ κ a≈b)
⟦⟧-trans (□ T) a≈a′ a′≈a″ k κ = record
{ ua = ue.ua
; ub = ue′.ub
; ↘ua = ue.↘ua
; ↘ub = ue′.↘ub
; uaTub = ⟦⟧-trans T ue.uaTub (subst (λ a′ → ⟦ T ⟧T a′ _) (unbox-det ue′.↘ua ue.↘ub) ue′.uaTub)
}
where module ue = unbox-equiv (a≈a′ k κ)
module ue′ = unbox-equiv (a′≈a″ k κ)
⟦⟧-PER : ∀ T → IsPartialEquivalence ⟦ T ⟧T
⟦⟧-PER T = record
{ sym = ⟦⟧-sym T
; trans = ⟦⟧-trans T
}
⟦⟧-refl : ∀ T → a ≈ b ∈ ⟦ T ⟧T → a ≈ a ∈ ⟦ T ⟧T
⟦⟧-refl T a≈b = ⟦⟧-trans T a≈b (⟦⟧-sym T a≈b)
l∈Bot : ∀ x → l x ≈ l x ∈ Bot
l∈Bot x ns κ = v (head ns ∸ x ∸ 1) , Rl ns x , Rl ns x
mutual
Bot⊆⟦⟧ : ∀ T → c ≈ c′ ∈ Bot → ↑ T c ≈ ↑ T c′ ∈ ⟦ T ⟧T
Bot⊆⟦⟧ B c≈c′ = bne c≈c′
Bot⊆⟦⟧ (S ⟶ T) c≈c′ κ a≈b = record
{ fa = [ T ] _ $′ ↓ S _
; fa′ = [ T ] _ $′ ↓ S _
; ↘fa = $∙ S T _ _
; ↘fa′ = $∙ S T _ _
; faTfa′ = Bot⊆⟦⟧ T λ ns κ′ → let u , ↘u , ↘u′ = c≈c′ ns (κ ø κ′)
w , ↘w , ↘w′ = ⟦⟧⊆Top S a≈b ns κ′
in u $ w
, R$ ns (subst (Re _ -_↘ _) (sym (Dn-comp _ κ κ′)) ↘u) ↘w
, R$ ns (subst (Re _ -_↘ _) (sym (Dn-comp _ κ κ′)) ↘u′) ↘w′
}
Bot⊆⟦⟧ (□ T) c≈c′ k κ = record
{ ua = unbox′ T k (mtran-c _ κ)
; ub = unbox′ T k (mtran-c _ κ)
; ↘ua = unbox∙ k
; ↘ub = unbox∙ k
; uaTub = Bot⊆⟦⟧ T λ ns κ′ → let u , ↘u , ↘u′ = c≈c′ (Tr ns (O κ′ k)) (κ ø Tr κ′ k)
in unbox (O κ′ k) u
, Ru ns (O κ′ k) (subst (Re _ -_↘ _) (sym (Dn-comp _ κ (Tr κ′ k))) ↘u)
, Ru ns (O κ′ k) (subst (Re _ -_↘ _) (sym (Dn-comp _ κ (Tr κ′ k))) ↘u′)
}
⟦⟧⊆Top : ∀ T → a ≈ b ∈ ⟦ T ⟧T → ↓ T a ≈ ↓ T b ∈ Top
⟦⟧⊆Top B (bne c≈c′) ns κ
with c≈c′ ns κ
... | u , ↘u , ↘u′ = ne u , Rne ns ↘u , Rne ns ↘u′
⟦⟧⊆Top (S ⟶ T) a≈b ns κ = let w , ↘w , ↘w′ = ⟦⟧⊆Top T faTfa′ (inc ns) vone
in Λ w
, RΛ ns ↘fa (subst (λ a′ → Rf inc ns - ↓ T a′ ↘ w) (ap-vone _) ↘w)
, RΛ ns ↘fa′ (subst (λ a′ → Rf inc ns - ↓ T a′ ↘ w) (ap-vone _) ↘w′)
where open ap-equiv (a≈b κ (Bot⊆⟦⟧ S (l∈Bot (head ns))))
⟦⟧⊆Top (□ T) a≈b ns κ = let w , ↘w , ↘w′ = ⟦⟧⊆Top T uaTub (0 ∷⁺ ns) vone
in box w
, R□ ns ↘ua (subst (Rf 0 ∷⁺ ns -_↘ w) (cong (↓ T) (ap-vone _)) ↘w)
, R□ ns ↘ub (subst (Rf 0 ∷⁺ ns -_↘ w) (cong (↓ T) (ap-vone _)) ↘w′)
where open unbox-equiv (a≈b 1 κ)
⟦⟧T-mon : ∀ T (κ : UMoT) → a ≈ b ∈ ⟦ T ⟧T → a [ κ ] ≈ b [ κ ] ∈ ⟦ T ⟧T
⟦⟧T-mon B κ (bne c≈c′) = bne λ ns κ′ → let u , ↘u , ↘u′ = c≈c′ ns (κ ø κ′)
in u
, subst (Re _ -_↘ _) (sym (Dn-comp _ κ κ′)) ↘u
, subst (Re _ -_↘ _) (sym (Dn-comp _ κ κ′)) ↘u′
⟦⟧T-mon {f} {f′} (S ⟶ T) κ f≈f′ κ′ a≈b
rewrite D-comp f κ κ′
| D-comp f′ κ κ′ = f≈f′ (κ ø κ′) a≈b
⟦⟧T-mon {a} {b} (□ T) κ a≈b k κ′
rewrite D-comp a κ κ′
| D-comp b κ κ′ = a≈b k (κ ø κ′)
⟦_⟧Γ : Ctx → Env → Env → Set
⟦ Γ ⟧Γ e e′ = ∀ {n T} → n ∶ T ∈ Γ → e n ≈ e′ n ∈ ⟦ T ⟧T
⟦_⟧Γs : List Ctx → Envs → Envs → Set
⟦ [] ⟧Γs ρ ρ′ = ⊤
⟦ Γ ∷ Γs ⟧Γs ρ ρ′ = ⟦ Γ ⟧Γ (proj₂ (ρ 0)) (proj₂ (ρ′ 0))
× proj₁ (ρ 0) ≡ proj₁ (ρ′ 0)
× ⟦ Γs ⟧Γs (Tr ρ 1) (Tr ρ′ 1)
⟦_⟧Ψ : Ctxs → Envs → Envs → Set
⟦ Γ ∷ Γs ⟧Ψ = ⟦ Γ ∷ Γs ⟧Γs
⟦⟧Γ-sym : ∀ Γ → Symmetric ⟦ Γ ⟧Γ
⟦⟧Γ-sym Γ e≈e′ T∈Γ = ⟦⟧-sym _ (e≈e′ T∈Γ)
⟦⟧Γ-trans : ∀ Γ → Transitive ⟦ Γ ⟧Γ
⟦⟧Γ-trans Γ e≈e′ e′≈e″ T∈Γ = ⟦⟧-trans _ (e≈e′ T∈Γ) (e′≈e″ T∈Γ)
⟦⟧Γ-PER : ∀ Γ → IsPartialEquivalence ⟦ Γ ⟧Γ
⟦⟧Γ-PER Γ = record
{ sym = ⟦⟧Γ-sym Γ
; trans = ⟦⟧Γ-trans Γ
}
⟦⟧Γs-sym : ∀ Γs → Symmetric ⟦ Γs ⟧Γs
⟦⟧Γs-sym [] = _
⟦⟧Γs-sym (Γ ∷ Γs) (e≈e′ , eq , tl) = ⟦⟧Γ-sym Γ e≈e′ , sym eq , ⟦⟧Γs-sym Γs tl
⟦⟧Γs-trans : ∀ Γs → Transitive ⟦ Γs ⟧Γs
⟦⟧Γs-trans [] = _
⟦⟧Γs-trans (Γ ∷ Γs) (e≈e′ , eq , tl) (e′≈e″ , eq′ , tl′) = ⟦⟧Γ-trans Γ e≈e′ e′≈e″ , trans eq eq′ , ⟦⟧Γs-trans Γs tl tl′
⟦⟧Γs-PER : ∀ Γs → IsPartialEquivalence ⟦ Γs ⟧Γs
⟦⟧Γs-PER Γs = record
{ sym = ⟦⟧Γs-sym Γs
; trans = ⟦⟧Γs-trans Γs
}
⟦⟧Ψ-sym : ∀ Ψ → Symmetric ⟦ Ψ ⟧Ψ
⟦⟧Ψ-sym (Γ ∷ Γs) {ρ} {ρ′} = ⟦⟧Γs-sym (Γ ∷ Γs) {ρ} {ρ′}
⟦⟧Ψ-trans : ∀ Ψ → Transitive ⟦ Ψ ⟧Ψ
⟦⟧Ψ-trans (Γ ∷ Γs) {ρ} {ρ′} {ρ″} = ⟦⟧Γs-trans (Γ ∷ Γs) {ρ} {ρ′} {ρ″}
⟦⟧Ψ-PER : ∀ Ψ → IsPartialEquivalence ⟦ Ψ ⟧Ψ
⟦⟧Ψ-PER Ψ = record
{ sym = λ {ρ} {ρ′} → ⟦⟧Ψ-sym Ψ {ρ} {ρ′}
; trans = λ {ρ} {ρ′} {ρ″} → ⟦⟧Ψ-trans Ψ {ρ} {ρ′} {ρ″}
}
⟦⟧Ψ-refl : ∀ Ψ ρ ρ′ → ρ ≈ ρ′ ∈ ⟦ Ψ ⟧Ψ → ρ ≈ ρ ∈ ⟦ Ψ ⟧Ψ
⟦⟧Ψ-refl Ψ ρ ρ′ ρ≈ρ′ = ⟦⟧Ψ-trans Ψ {ρ} {ρ′} {ρ} ρ≈ρ′ (⟦⟧Ψ-sym Ψ {ρ} {ρ′} ρ≈ρ′)
⟦⟧Γs-O : ∀ n Γs → ρ ≈ ρ′ ∈ ⟦ Γs ⟧Γs → n < len Γs → O ρ n ≡ O ρ′ n
⟦⟧Γs-O zero Γs ρ≈ρ′ n< = refl
⟦⟧Γs-O (suc n) (Γ ∷ Γs) (_ , eq , ρ≈ρ′) (s≤s n<) = cong₂ _+_ eq (⟦⟧Γs-O n Γs ρ≈ρ′ n<)
⟦⟧Ψ-O : ∀ ρ ρ′ n → ρ ≈ ρ′ ∈ ⟦ Ψ ⟧Ψ → n < len Ψ → O ρ n ≡ O ρ′ n
⟦⟧Ψ-O {Γ ∷ Γs} ρ ρ′ n = ⟦⟧Γs-O {ρ} {ρ′} n (Γ ∷ Γs)
⟦⟧Γs-mon : ∀ Γs (κ : UMoT) → ρ ≈ ρ′ ∈ ⟦ Γs ⟧Γs → ρ [ κ ] ≈ ρ′ [ κ ] ∈ ⟦ Γs ⟧Γs
⟦⟧Γs-mon [] κ ρ≈ρ′ = tt
⟦⟧Γs-mon {ρ} {ρ′} (Γ ∷ Γs) κ (e≈e′ , eq , ρ≈ρ′)
rewrite Tr-ρ-[] ρ κ 1
| Tr-ρ-[] ρ′ κ 1
| sym eq = (λ T∈Γ → ⟦⟧T-mon _ κ (e≈e′ T∈Γ)) , refl , ⟦⟧Γs-mon Γs (Tr κ (proj₁ (ρ 0) + 0)) ρ≈ρ′
⟦⟧Ψ-mon : ∀ ρ ρ′ (κ : UMoT) → ρ ≈ ρ′ ∈ ⟦ Ψ ⟧Ψ → ρ [ κ ] ≈ ρ′ [ κ ] ∈ ⟦ Ψ ⟧Ψ
⟦⟧Ψ-mon {Γ ∷ Γs} ρ ρ′ = ⟦⟧Γs-mon {ρ} {ρ′} (Γ ∷ Γs)
⟦⟧Ψ-Tr : ∀ n → ρ ≈ ρ′ ∈ ⟦ Ψ ⟧Ψ → n < len Ψ → ∃₂ λ Δs Ψ′ → Ψ ≡ Δs ++⁺ Ψ′ × len Δs ≡ n × (Tr ρ n ≈ Tr ρ′ n ∈ ⟦ Ψ′ ⟧Ψ)
⟦⟧Ψ-Tr {_} {_} {Ψ} zero ρ≈ρ′ n< = [] , Ψ , refl , refl , ρ≈ρ′
⟦⟧Ψ-Tr {ρ} {ρ′} {Γ ∷ Γ′ ∷ Γs} (suc n) (e≈e′ , eq , ρ≈ρ′) (s≤s n<)
with ⟦⟧Ψ-Tr {Tr ρ 1} {Tr ρ′ 1} {Γ′ ∷ Γs} n ρ≈ρ′ n<
... | Δs , Ψ′ , eq′ , eql , rel = Γ ∷ Δs , Ψ′ , cong (Γ ∷_) (cong toList eq′) , cong suc eql , rel
⟦⟧Ψ-O′ : ∀ ρ ρ′ Δs → ρ ≈ ρ′ ∈ ⟦ Δs ++⁺ Ψ ⟧Ψ → O ρ (len Δs) ≡ O ρ′ (len Δs)
⟦⟧Ψ-O′ ρ ρ′ Δs ρ≈ρ′ = ⟦⟧Ψ-O ρ ρ′ (len Δs) ρ≈ρ′ (length-<-++⁺ Δs)
⟦⟧Ψ-Tr′ : ∀ ρ ρ′ Δs → ρ ≈ ρ′ ∈ ⟦ Δs ++⁺ Ψ ⟧Ψ → Tr ρ (len Δs) ≈ Tr ρ′ (len Δs) ∈ ⟦ Ψ ⟧Ψ
⟦⟧Ψ-Tr′ {Ψ} ρ ρ′ Δs ρ≈ρ′
with ⟦⟧Ψ-Tr {ρ} {ρ′} (len Δs) ρ≈ρ′ (length-<-++⁺ Δs)
... | Δs′ , Ψ′ , eq , eql , rel
rewrite ++⁺-cancelˡ′ Δs Δs′ eq (sym eql) = rel
ctx-↦ : ∀ {Γ Γs} ρ ρ′ → ρ ≈ ρ′ ∈ ⟦ Γ ∷ Γs ⟧Ψ → a ≈ b ∈ ⟦ T ⟧T → ρ ↦ a ≈ ρ′ ↦ b ∈ ⟦ (T ∷ Γ) ∷ Γs ⟧Ψ
ctx-↦ _ _ (e≈e′ , eq , ρ≈ρ′) a≈b = (λ { here → a≈b
; (there T∈Γ) → e≈e′ T∈Γ })
, eq , ρ≈ρ′
ctx-ext : ∀ ρ ρ′ n → ρ ≈ ρ′ ∈ ⟦ Ψ ⟧Ψ → ext ρ n ≈ ext ρ′ n ∈ ⟦ [] ∷ toList Ψ ⟧Ψ
ctx-ext ρ ρ′ n ρ≈ρ′ = (λ { () }) , refl , ρ≈ρ′
ctx-drop : ∀ ρ ρ′ → ρ ≈ ρ′ ∈ ⟦ (T ∷ Γ) ∷ Γs ⟧Ψ → drop ρ ≈ drop ρ′ ∈ ⟦ Γ ∷ Γs ⟧Ψ
ctx-drop ρ ρ′ (e≈e′ , eq , ρ≈ρ′) = (λ T∈Γ → e≈e′ (there T∈Γ)) , eq , ρ≈ρ′
lookup-ctx : ∀ {x} ρ ρ′ → x ∶ T ∈ Γ → ρ ≈ ρ′ ∈ ⟦ Γ ∷ Γs ⟧Ψ → lookup ρ x ≈ lookup ρ′ x ∈ ⟦ T ⟧T
lookup-ctx _ _ T∈Γ (e≈e′ , _) = e≈e′ T∈Γ
record ⟦_⟧_≈⟦_⟧_∈_ s ρ t ρ′ T : Set where
field
⟦s⟧ : D
⟦t⟧ : D
↘⟦s⟧ : ⟦ s ⟧ ρ ↘ ⟦s⟧
↘⟦t⟧ : ⟦ t ⟧ ρ′ ↘ ⟦t⟧
sTt : ⟦s⟧ ≈ ⟦t⟧ ∈ ⟦ T ⟧T
module Intp {s ρ u ρ′ T} (r : ⟦ s ⟧ ρ ≈⟦ u ⟧ ρ′ ∈ T) = ⟦_⟧_≈⟦_⟧_∈_ r
record ⟦_⟧_≈⟦_⟧_∈s_ σ ρ τ ρ′ Ψ : Set where
field
⟦σ⟧ : Envs
⟦τ⟧ : Envs
↘⟦σ⟧ : ⟦ σ ⟧s ρ ↘ ⟦σ⟧
↘⟦τ⟧ : ⟦ τ ⟧s ρ′ ↘ ⟦τ⟧
σΨτ : ⟦σ⟧ ≈ ⟦τ⟧ ∈ ⟦ Ψ ⟧Ψ
module Intps {σ ρ τ ρ′ Γ} (r : ⟦ σ ⟧ ρ ≈⟦ τ ⟧ ρ′ ∈s Γ) = ⟦_⟧_≈⟦_⟧_∈s_ r
infix 4 _⊨_≈_∶_ _⊨_∶_ _⊨s_≈_∶_ _⊨s_∶_
_⊨_≈_∶_ : Ctxs → Exp → Exp → Typ → Set
Ψ ⊨ t ≈ t′ ∶ T = ∀ ρ ρ′ → ρ ≈ ρ′ ∈ ⟦ Ψ ⟧Ψ → ⟦ t ⟧ ρ ≈⟦ t′ ⟧ ρ′ ∈ T
_⊨_∶_ : Ctxs → Exp → Typ → Set
Ψ ⊨ t ∶ T = Ψ ⊨ t ≈ t ∶ T
_⊨s_≈_∶_ : Ctxs → Substs → Substs → Ctxs → Set
Ψ ⊨s σ ≈ τ ∶ Ψ′ = ∀ ρ ρ′ → ρ ≈ ρ′ ∈ ⟦ Ψ ⟧Ψ → ⟦ σ ⟧ ρ ≈⟦ τ ⟧ ρ′ ∈s Ψ′
_⊨s_∶_ : Ctxs → Substs → Ctxs → Set
Ψ ⊨s σ ∶ Ψ′ = Ψ ⊨s σ ≈ σ ∶ Ψ′
≈-sym′ : Ψ ⊨ t ≈ t′ ∶ T →
Ψ ⊨ t′ ≈ t ∶ T
≈-sym′ {Ψ} t≈t′ ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = ⟦t⟧
; ⟦t⟧ = ⟦s⟧
; ↘⟦s⟧ = ↘⟦t⟧
; ↘⟦t⟧ = ↘⟦s⟧
; sTt = ⟦⟧-sym _ sTt
}
where open Intp (t≈t′ ρ′ ρ (⟦⟧Ψ-sym _ {ρ} {ρ′} ρ≈ρ′))
≈-trans′ : Ψ ⊨ t ≈ t′ ∶ T →
Ψ ⊨ t′ ≈ t″ ∶ T →
Ψ ⊨ t ≈ t″ ∶ T
≈-trans′ {Ψ} {T = T} t≈t′ t′≈t″ ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = i₁.⟦s⟧
; ⟦t⟧ = i₂.⟦t⟧
; ↘⟦s⟧ = i₁.↘⟦s⟧
; ↘⟦t⟧ = i₂.↘⟦t⟧
; sTt = ⟦⟧-trans _ i₁.sTt (subst (_≈ i₂.⟦t⟧ ∈ ⟦ T ⟧T) (⟦⟧-det i₂.↘⟦s⟧ i₁.↘⟦t⟧) i₂.sTt)
}
where module i₁ = Intp (t≈t′ ρ ρ (⟦⟧Ψ-refl _ ρ ρ′ ρ≈ρ′))
module i₂ = Intp (t′≈t″ ρ ρ′ ρ≈ρ′)
v-≈′ : ∀ {x} →
x ∶ T ∈ Γ →
Γ ∷ Γs ⊨ v x ≈ v x ∶ T
v-≈′ {x = x} T∈Γ ρ ρ′ (e≈e′ , _) = record
{ ⟦s⟧ = lookup ρ x
; ⟦t⟧ = lookup ρ′ x
; ↘⟦s⟧ = ⟦v⟧ _
; ↘⟦t⟧ = ⟦v⟧ _
; sTt = e≈e′ T∈Γ
}
Λ-cong′ : (S ∷ Γ) ∷ Γs ⊨ t ≈ t′ ∶ T →
Γ ∷ Γs ⊨ Λ t ≈ Λ t′ ∶ S ⟶ T
Λ-cong′ {_} {_} {_} {t} {t′} t≈t′ ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = Λ _ _
; ⟦t⟧ = Λ _ _
; ↘⟦s⟧ = ⟦Λ⟧ _
; ↘⟦t⟧ = ⟦Λ⟧ _
; sTt = λ {a} {b} κ a≈b →
let ρκ,a = ctx-↦ (ρ [ κ ]) (ρ′ [ κ ]) (⟦⟧Ψ-mon ρ ρ′ κ ρ≈ρ′) a≈b
intp = t≈t′ (ρ [ κ ] ↦ a) (ρ′ [ κ ] ↦ b) ρκ,a
open Intp intp
in record
{ fa = ⟦s⟧
; fa′ = ⟦t⟧
; ↘fa = Λ∙ ↘⟦s⟧
; ↘fa′ = Λ∙ ↘⟦t⟧
; faTfa′ = sTt
}
}
$-cong′ : Ψ ⊨ t ≈ t′ ∶ S ⟶ T →
Ψ ⊨ s ≈ s′ ∶ S →
Ψ ⊨ t $ s ≈ t′ $ s′ ∶ T
$-cong′ t≈t′ s≈s′ ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = ae.fa
; ⟦t⟧ = ae.fa′
; ↘⟦s⟧ = ⟦$⟧ i₁.↘⟦s⟧ i₂.↘⟦s⟧ ae.↘fa
; ↘⟦t⟧ = ⟦$⟧ i₁.↘⟦t⟧ i₂.↘⟦t⟧ ae.↘fa′
; sTt = ae.faTfa′
}
where module i₁ = Intp (t≈t′ ρ ρ′ ρ≈ρ′)
module i₂ = Intp (s≈s′ ρ ρ′ ρ≈ρ′)
module ae = ap-equiv (subst₂ (λ a b → ap-equiv a _ b _ _) (ap-vone _) (ap-vone _) (i₁.sTt vone i₂.sTt))
box-cong′ : [] ∷⁺ Ψ ⊨ t ≈ t′ ∶ T →
Ψ ⊨ box t ≈ box t′ ∶ □ T
box-cong′ {_} {t} {t′} t≈t′ ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = box ⟦s⟧
; ⟦t⟧ = box ⟦t⟧
; ↘⟦s⟧ = ⟦box⟧ ↘⟦s⟧
; ↘⟦t⟧ = ⟦box⟧ ↘⟦t⟧
; sTt = λ k κ → record
{ ua = ⟦s⟧ [ ins κ 1 ] [ ins vone k ]
; ub = ⟦t⟧ [ ins κ 1 ] [ ins vone k ]
; ↘ua = box↘ k
; ↘ub = box↘ k
; uaTub = ⟦⟧T-mon _ (ins vone k) (⟦⟧T-mon _ (ins κ 1) sTt)
}
}
where open Intp (t≈t′ (ext ρ 1) (ext ρ′ 1) (ctx-ext ρ ρ′ 1 ρ≈ρ′))
unbox-cong′ : ∀ {n} Γs →
Ψ ⊨ t ≈ t′ ∶ □ T →
len Γs ≡ n →
Γs ++⁺ Ψ ⊨ unbox n t ≈ unbox n t′ ∶ T
unbox-cong′ {_} {t} {t′} {_} {n} Γs t≈t′ refl ρ ρ′ ρ≈ρ′ =
let ↘ub′ = subst (unbox∙_, ⟦t⟧ ↘ ub) (⟦⟧Ψ-O′ ρ ρ′ Γs ρ≈ρ′) ↘ub
in record
{ ⟦s⟧ = ua
; ⟦t⟧ = ub
; ↘⟦s⟧ = ⟦unbox⟧ n ↘⟦s⟧ ↘ua
; ↘⟦t⟧ = ⟦unbox⟧ n ↘⟦t⟧ ↘ub′
; sTt = uaTub
}
where open Intp (t≈t′ (Tr ρ n) (Tr ρ′ n) (⟦⟧Ψ-Tr′ ρ ρ′ Γs ρ≈ρ′))
open unbox-equiv (subst₂ (λ a b → unbox-equiv _ a b _) (ap-vone _) (ap-vone _) (sTt (O ρ n) vone))
[]-cong′ : Ψ ⊨ t ≈ t′ ∶ T →
Ψ′ ⊨s σ ≈ σ′ ∶ Ψ →
Ψ′ ⊨ t [ σ ] ≈ t′ [ σ′ ] ∶ T
[]-cong′ {_} {t} {t′} t≈t′ σ≈σ′ ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = ⟦s⟧
; ⟦t⟧ = ⟦t⟧
; ↘⟦s⟧ = ⟦[]⟧ ↘⟦σ⟧ ↘⟦s⟧
; ↘⟦t⟧ = ⟦[]⟧ ↘⟦τ⟧ ↘⟦t⟧
; sTt = sTt
}
where open Intps (σ≈σ′ ρ ρ′ ρ≈ρ′)
open Intp (t≈t′ ⟦σ⟧ ⟦τ⟧ σΨτ)
s-≈-sym′ : Ψ ⊨s σ ≈ σ′ ∶ Ψ′ →
Ψ ⊨s σ′ ≈ σ ∶ Ψ′
s-≈-sym′ σ≈σ′ ρ ρ′ ρ≈ρ′ = record
{ ⟦σ⟧ = ⟦τ⟧
; ⟦τ⟧ = ⟦σ⟧
; ↘⟦σ⟧ = ↘⟦τ⟧
; ↘⟦τ⟧ = ↘⟦σ⟧
; σΨτ = ⟦⟧Ψ-sym _ {⟦σ⟧} {⟦τ⟧} σΨτ
}
where open Intps (σ≈σ′ ρ′ ρ (⟦⟧Ψ-sym _ {ρ} {ρ′} ρ≈ρ′))
s-≈-trans′ : Ψ ⊨s σ ≈ σ′ ∶ Ψ′ →
Ψ ⊨s σ′ ≈ σ″ ∶ Ψ′ →
Ψ ⊨s σ ≈ σ″ ∶ Ψ′
s-≈-trans′ {Ψ′ = Ψ′} σ≈σ′ σ′≈σ″ ρ ρ′ ρ≈ρ′ = record
{ ⟦σ⟧ = i₁.⟦σ⟧
; ⟦τ⟧ = i₂.⟦τ⟧
; ↘⟦σ⟧ = i₁.↘⟦σ⟧
; ↘⟦τ⟧ = i₂.↘⟦τ⟧
; σΨτ = ⟦⟧Ψ-trans _ {i₁.⟦σ⟧} {i₁.⟦τ⟧} {i₂.⟦τ⟧} i₁.σΨτ (subst (_≈ i₂.⟦τ⟧ ∈ ⟦ Ψ′ ⟧Ψ) (⟦⟧s-det i₂.↘⟦σ⟧ i₁.↘⟦τ⟧) i₂.σΨτ)
}
where module i₁ = Intps (σ≈σ′ ρ ρ (⟦⟧Ψ-refl _ ρ ρ′ ρ≈ρ′))
module i₂ = Intps (σ′≈σ″ ρ ρ′ ρ≈ρ′)
I-≈′ : Ψ ⊨s I ≈ I ∶ Ψ
I-≈′ ρ ρ′ ρ≈ρ′ = record
{ ⟦σ⟧ = ρ
; ⟦τ⟧ = ρ′
; ↘⟦σ⟧ = ⟦I⟧
; ↘⟦τ⟧ = ⟦I⟧
; σΨτ = ρ≈ρ′
}
p-≈′ : (T ∷ Γ) ∷ Γs ⊨s p ≈ p ∶ Γ ∷ Γs
p-≈′ ρ ρ′ ρ≈ρ′ = record
{ ⟦σ⟧ = drop ρ
; ⟦τ⟧ = drop ρ′
; ↘⟦σ⟧ = ⟦p⟧
; ↘⟦τ⟧ = ⟦p⟧
; σΨτ = ctx-drop ρ ρ′ ρ≈ρ′
}
,-cong′ : Ψ ⊨s σ ≈ σ′ ∶ Γ ∷ Γs →
Ψ ⊨ t ≈ t′ ∶ T →
Ψ ⊨s σ , t ≈ σ′ , t′ ∶ (T ∷ Γ) ∷ Γs
,-cong′ {_} {σ} {σ′} {_} {_} {t} {t′} σ≈σ′ t≈t′ ρ ρ′ ρ≈ρ′ = record
{ ⟦σ⟧ = ⟦σ⟧ ↦ ⟦s⟧
; ⟦τ⟧ = ⟦τ⟧ ↦ ⟦t⟧
; ↘⟦σ⟧ = ⟦,⟧ ↘⟦σ⟧ ↘⟦s⟧
; ↘⟦τ⟧ = ⟦,⟧ ↘⟦τ⟧ ↘⟦t⟧
; σΨτ = ctx-↦ ⟦σ⟧ ⟦τ⟧ σΨτ sTt
}
where open Intps (σ≈σ′ ρ ρ′ ρ≈ρ′)
open Intp (t≈t′ ρ ρ′ ρ≈ρ′)
;-cong′ : ∀ {n} Γs →
Ψ ⊨s σ ≈ σ′ ∶ Ψ′ →
len Γs ≡ n →
Γs ++⁺ Ψ ⊨s σ ; n ≈ σ′ ; n ∶ [] ∷⁺ Ψ′
;-cong′ {_} {σ} {σ′} {Ψ′} {n = n} Γs σ≈σ′ refl ρ ρ′ ρ≈ρ′ = record
{ ⟦σ⟧ = ext ⟦σ⟧ (O ρ n)
; ⟦τ⟧ = ext ⟦τ⟧ (O ρ′ n)
; ↘⟦σ⟧ = ⟦;⟧ ↘⟦σ⟧
; ↘⟦τ⟧ = ⟦;⟧ ↘⟦τ⟧
; σΨτ = subst (λ m → ext ⟦σ⟧ (O ρ n) ≈ ext ⟦τ⟧ m ∈ ⟦ [] ∷⁺ Ψ′ ⟧Ψ) (⟦⟧Ψ-O′ ρ ρ′ Γs ρ≈ρ′) (ctx-ext ⟦σ⟧ ⟦τ⟧ (O ρ n) σΨτ)
}
where open Intps (σ≈σ′ (Tr ρ n) (Tr ρ′ n) (⟦⟧Ψ-Tr′ ρ ρ′ Γs ρ≈ρ′))
∘-cong′ : Ψ ⊨s δ ≈ δ′ ∶ Ψ′ →
Ψ′ ⊨s σ ≈ σ′ ∶ Ψ″ →
Ψ ⊨s σ ∘ δ ≈ σ′ ∘ δ′ ∶ Ψ″
∘-cong′ {σ = σ} {σ′} δ≈δ′ σ≈σ′ ρ ρ′ ρ≈ρ′ = record
{ ⟦σ⟧ = i₂.⟦σ⟧
; ⟦τ⟧ = i₂.⟦τ⟧
; ↘⟦σ⟧ = ⟦∘⟧ i₁.↘⟦σ⟧ i₂.↘⟦σ⟧
; ↘⟦τ⟧ = ⟦∘⟧ i₁.↘⟦τ⟧ i₂.↘⟦τ⟧
; σΨτ = i₂.σΨτ
}
where module i₁ = Intps (δ≈δ′ ρ ρ′ ρ≈ρ′)
module i₂ = Intps (σ≈σ′ i₁.⟦σ⟧ i₁.⟦τ⟧ i₁.σΨτ)
Λ-[]′ : Ψ ⊨s σ ∶ Γ ∷ Γs →
(S ∷ Γ) ∷ Γs ⊨ t ∶ T →
Ψ ⊨ Λ t [ σ ] ≈ Λ (t [ q σ ]) ∶ S ⟶ T
Λ-[]′ {_} {σ} {t = t} ⊨σ ⊨t ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = Λ _ ⟦σ⟧
; ⟦t⟧ = Λ (_ [ q _ ]) ρ′
; ↘⟦s⟧ = ⟦[]⟧ ↘⟦σ⟧ (⟦Λ⟧ _)
; ↘⟦t⟧ = ⟦Λ⟧ _
; sTt = λ {a} {b} κ a≈b →
let intp = ⊨t (⟦σ⟧ [ κ ] ↦ a) (⟦τ⟧ [ κ ] ↦ b) (ctx-↦ (⟦σ⟧ [ κ ]) (⟦τ⟧ [ κ ]) (⟦⟧Ψ-mon ⟦σ⟧ ⟦τ⟧ κ σΨτ) a≈b)
open Intp intp
in record
{ fa = ⟦s⟧
; fa′ = ⟦t⟧
; ↘fa = Λ∙ ↘⟦s⟧
; ↘fa′ = Λ∙ (⟦[]⟧ (⟦,⟧ (⟦∘⟧ ⟦p⟧ (subst (⟦ σ ⟧s_↘ ⟦τ⟧ [ κ ]) (sym (drop-↦ _ _)) (⟦⟧s-mon κ ↘⟦τ⟧))) (⟦v⟧ _)) ↘⟦t⟧)
; faTfa′ = sTt
}
}
where open Intps (⊨σ ρ ρ′ ρ≈ρ′)
$-[]′ : Ψ ⊨s σ ∶ Ψ′ →
Ψ′ ⊨ t ∶ S ⟶ T →
Ψ′ ⊨ s ∶ S →
Ψ ⊨ t $ s [ σ ] ≈ (t [ σ ]) $ (s [ σ ]) ∶ T
$-[]′ {_} {σ} {_} {t} {_} {T} {s} ⊨σ ⊨t ⊨s ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = fa
; ⟦t⟧ = fa′
; ↘⟦s⟧ = ⟦[]⟧ ↘⟦σ⟧ (⟦$⟧ it.↘⟦s⟧ is.↘⟦s⟧ ↘fa)
; ↘⟦t⟧ = ⟦$⟧ (⟦[]⟧ ↘⟦τ⟧ it.↘⟦t⟧) (⟦[]⟧ ↘⟦τ⟧ is.↘⟦t⟧) ↘fa′
; sTt = faTfa′
}
where open Intps (⊨σ ρ ρ′ ρ≈ρ′)
module it = Intp (⊨t ⟦σ⟧ ⟦τ⟧ σΨτ)
module is = Intp (⊨s ⟦σ⟧ ⟦τ⟧ σΨτ)
open ap-equiv (subst₂ (λ a b → ap-equiv a is.⟦s⟧ b is.⟦t⟧ ⟦ T ⟧T) (ap-vone _) (ap-vone _) (it.sTt vone is.sTt))
box-[]′ : Ψ ⊨s σ ∶ Ψ′ →
[] ∷⁺ Ψ′ ⊨ t ∶ T →
Ψ ⊨ box t [ σ ] ≈ box (t [ σ ; 1 ]) ∶ □ T
box-[]′ {_} {σ} {_} {t} ⊨σ ⊨t ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = box ⟦s⟧
; ⟦t⟧ = box ⟦t⟧
; ↘⟦s⟧ = ⟦[]⟧ ↘⟦σ⟧ (⟦box⟧ ↘⟦s⟧)
; ↘⟦t⟧ = ⟦box⟧ (⟦[]⟧ (⟦;⟧ ↘⟦τ⟧) ↘⟦t⟧)
; sTt = λ k κ → record
{ ua = ⟦s⟧ [ ins κ 1 ] [ ins vone k ]
; ub = ⟦t⟧ [ ins κ 1 ] [ ins vone k ]
; ↘ua = box↘ k
; ↘ub = box↘ k
; uaTub = ⟦⟧T-mon _ (ins vone k) (⟦⟧T-mon _ (ins κ 1) sTt)
}
}
where open Intps (⊨σ ρ ρ′ ρ≈ρ′)
open Intp (⊨t (ext ⟦σ⟧ 1) (ext ⟦τ⟧ 1) (ctx-ext ⟦σ⟧ ⟦τ⟧ 1 σΨτ))
unbox-[]′ : ∀ {n} Γs →
Ψ ⊨s σ ∶ Γs ++⁺ Ψ′ →
Ψ′ ⊨ t ∶ □ T →
len Γs ≡ n →
Ψ ⊨ unbox n t [ σ ] ≈ unbox (O σ n) (t [ Tr σ n ]) ∶ T
unbox-[]′ {_} {σ} {_} {t} {_} {n} Γs ⊨σ ⊨t refl ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = ua
; ⟦t⟧ = ub
; ↘⟦s⟧ = ⟦[]⟧ ↘⟦σ⟧ (⟦unbox⟧ n ↘⟦s⟧ ↘ua)
; ↘⟦t⟧ = ⟦unbox⟧ (O σ n) (⟦[]⟧ (Tr-⟦⟧s n ↘⟦τ⟧) ↘⟦t⟧) (subst (unbox∙_, _ ↘ _) (trans eql (sym (O-⟦⟧s n ↘⟦τ⟧))) ↘ub)
; sTt = uaTub
}
where open Intps (⊨σ ρ ρ′ ρ≈ρ′)
open Intp (⊨t (Tr ⟦σ⟧ n) (Tr ⟦τ⟧ n) (⟦⟧Ψ-Tr′ ⟦σ⟧ ⟦τ⟧ Γs σΨτ))
open unbox-equiv (subst₂ (λ a b → unbox-equiv _ a b _) (ap-vone ⟦s⟧) (ap-vone ⟦t⟧) (sTt (O ⟦σ⟧ n) vone))
eql = ⟦⟧Ψ-O′ ⟦σ⟧ ⟦τ⟧ Γs σΨτ
⟶-β′ : (S ∷ Γ) ∷ Γs ⊨ t ∶ T →
Γ ∷ Γs ⊨ s ∶ S →
Γ ∷ Γs ⊨ Λ t $ s ≈ t [ I , s ] ∶ T
⟶-β′ {t = t} {s} ⊨t ⊨s ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = it.⟦s⟧
; ⟦t⟧ = it.⟦t⟧
; ↘⟦s⟧ = ⟦$⟧ (⟦Λ⟧ _) is.↘⟦s⟧ (Λ∙ it.↘⟦s⟧)
; ↘⟦t⟧ = ⟦[]⟧ (⟦,⟧ ⟦I⟧ is.↘⟦t⟧) it.↘⟦t⟧
; sTt = it.sTt
}
where module is = Intp (⊨s ρ ρ′ ρ≈ρ′)
module it = Intp (⊨t (ρ ↦ is.⟦s⟧) (ρ′ ↦ is.⟦t⟧) (ctx-↦ ρ ρ′ ρ≈ρ′ is.sTt))
□-β′ : ∀ {n} Γs →
[] ∷⁺ Ψ ⊨ t ∶ T →
len Γs ≡ n →
Γs ++⁺ Ψ ⊨ unbox n (box t) ≈ t [ I ; n ] ∶ T
□-β′ {_} {t} {T} {n} Γs ⊨t refl ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = ⟦s⟧ [ ins vone (O ρ n) ]
; ⟦t⟧ = ⟦t⟧ [ ins vone (O ρ′ n) ]
; ↘⟦s⟧ = ⟦unbox⟧ n (⟦box⟧ ↘⟦s⟧) (box↘ (O ρ n))
; ↘⟦t⟧ = ⟦[]⟧ (⟦;⟧ ⟦I⟧) (subst (⟦ t ⟧_↘ ⟦t⟧ [ ins vone (O ρ′ n) ])
(trans (ext1-mon-ins (Tr ρ′ n) vone (O ρ′ n))
(cong (λ ρ″ → ext ρ″ (O ρ′ n)) (ρ-ap-vone _)))
(⟦⟧-mon (ins vone (O ρ′ n)) ↘⟦t⟧))
; sTt = subst (λ m → ⟦s⟧ [ ins vone (O ρ n) ] ≈ ⟦t⟧ [ ins vone m ] ∈ ⟦ T ⟧T)
(⟦⟧Ψ-O′ ρ ρ′ Γs ρ≈ρ′)
(⟦⟧T-mon _ (ins vone (O ρ n)) sTt)
}
where open Intp (⊨t (ext (Tr ρ n) 1) (ext (Tr ρ′ n) 1) (ctx-ext (Tr ρ n) (Tr ρ′ n) 1 (⟦⟧Ψ-Tr′ ρ ρ′ Γs ρ≈ρ′)))
⟶-η′ : Ψ ⊨ t ∶ S ⟶ T →
Ψ ⊨ t ≈ Λ ((t [ p ]) $ v 0) ∶ S ⟶ T
⟶-η′ {_} {t} ⊨t ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = ⟦s⟧
; ⟦t⟧ = Λ ((_ [ p ]) $ v 0) ρ′
; ↘⟦s⟧ = ↘⟦s⟧
; ↘⟦t⟧ = ⟦Λ⟧ _
; sTt = λ {a} {b} κ a≈b →
let open ap-equiv (sTt κ a≈b)
in record
{ fa = fa
; fa′ = fa′
; ↘fa = ↘fa
; ↘fa′ = Λ∙ (⟦$⟧ (⟦[]⟧ ⟦p⟧ (subst (⟦ t ⟧_↘ ⟦t⟧ [ κ ]) (sym (drop-↦ _ _)) (⟦⟧-mon κ ↘⟦t⟧))) (⟦v⟧ _) ↘fa′)
; faTfa′ = faTfa′
}
}
where open Intp (⊨t ρ ρ′ ρ≈ρ′)
□-η′ : Ψ ⊨ t ∶ □ T →
Ψ ⊨ t ≈ box (unbox 1 t) ∶ □ T
□-η′ {_} {t} {T} ⊨t ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = ⟦s⟧
; ⟦t⟧ = box ub
; ↘⟦s⟧ = ↘⟦s⟧
; ↘⟦t⟧ = ⟦box⟧ (⟦unbox⟧ 1 ↘⟦t⟧ ↘ub)
; sTt = λ k κ → record
{ ua = ua [ ins κ k ]
; ub = ub [ ins κ 1 ] [ ins vone k ]
; ↘ua = subst (unbox∙_, _ ↘ ua [ ins κ k ]) (+-identityʳ _) (unbox-mon-⇒ (ins κ k) ↘ua)
; ↘ub = box↘ k
; uaTub = subst (⟦ T ⟧T (ua [ ins κ k ]))
(trans (cong (ub [_]) (sym (ins-1-ø-ins-vone κ k)))
(sym (D-comp ub (ins κ 1) (ins vone k))))
(⟦⟧T-mon _ (ins κ k) uaTub)
}
}
where open Intp (⊨t ρ ρ′ ρ≈ρ′)
open unbox-equiv (subst₂ (λ a b → unbox-equiv 1 a b ⟦ T ⟧T) (ap-vone _) (ap-vone _) (sTt 1 vone))
v-ze′ : Ψ ⊨s σ ∶ Γ ∷ Γs →
Ψ ⊨ t ∶ T →
Ψ ⊨ v 0 [ σ , t ] ≈ t ∶ T
v-ze′ ⊨σ ⊨t ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = ⟦s⟧
; ⟦t⟧ = ⟦t⟧
; ↘⟦s⟧ = ⟦[]⟧ (⟦,⟧ ↘⟦σ⟧ ↘⟦s⟧) (⟦v⟧ 0)
; ↘⟦t⟧ = ↘⟦t⟧
; sTt = sTt
}
where open Intps (⊨σ ρ ρ′ ρ≈ρ′)
open Intp (⊨t ρ ρ′ ρ≈ρ′)
v-su′ : ∀ {x} →
Ψ ⊨s σ ∶ Γ ∷ Γs →
Ψ ⊨ t ∶ S →
x ∶ T ∈ Γ →
Ψ ⊨ v (suc x) [ σ , t ] ≈ v x [ σ ] ∶ T
v-su′ ⊨σ ⊨t T∈Γ ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = lookup ⟦σ⟧ _
; ⟦t⟧ = lookup ⟦τ⟧ _
; ↘⟦s⟧ = ⟦[]⟧ (⟦,⟧ ↘⟦σ⟧ ↘⟦s⟧) (⟦v⟧ (suc _))
; ↘⟦t⟧ = ⟦[]⟧ ↘⟦τ⟧ (⟦v⟧ _)
; sTt = lookup-ctx ⟦σ⟧ ⟦τ⟧ T∈Γ σΨτ
}
where open Intps (⊨σ ρ ρ′ ρ≈ρ′)
open Intp (⊨t ρ ρ′ ρ≈ρ′)
[I]′ : Ψ ⊨ t ∶ T →
Ψ ⊨ t [ I ] ≈ t ∶ T
[I]′ ⊨t ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = ⟦s⟧
; ⟦t⟧ = ⟦t⟧
; ↘⟦s⟧ = ⟦[]⟧ ⟦I⟧ ↘⟦s⟧
; ↘⟦t⟧ = ↘⟦t⟧
; sTt = sTt
}
where open Intp (⊨t ρ ρ′ ρ≈ρ′)
[∘]′ : Ψ ⊨s σ ∶ Ψ′ →
Ψ′ ⊨s σ′ ∶ Ψ″ →
Ψ″ ⊨ t ∶ T →
Ψ ⊨ t [ σ′ ∘ σ ] ≈ t [ σ′ ] [ σ ] ∶ T
[∘]′ ⊨σ ⊨σ′ ⊨t ρ ρ′ ρ≈ρ′ = record
{ ⟦s⟧ = ⟦s⟧
; ⟦t⟧ = ⟦t⟧
; ↘⟦s⟧ = ⟦[]⟧ (⟦∘⟧ σ.↘⟦σ⟧ σ′.↘⟦σ⟧) ↘⟦s⟧
; ↘⟦t⟧ = ⟦[]⟧ σ.↘⟦τ⟧ (⟦[]⟧ σ′.↘⟦τ⟧ ↘⟦t⟧)
; sTt = sTt
}
where module σ = Intps (⊨σ ρ ρ′ ρ≈ρ′)
module σ′ = Intps (⊨σ′ σ.⟦σ⟧ σ.⟦τ⟧ σ.σΨτ)
open Intp (⊨t σ′.⟦σ⟧ σ′.⟦τ⟧ σ′.σΨτ)
[p]′ : ∀ {x} →
x ∶ T ∈ Γ →
(S ∷ Γ) ∷ Γs ⊨ v x [ p ] ≈ v (suc x) ∶ T
[p]′ T∈Γ ρ ρ′ (e≈e′ , _) = record
{ ⟦s⟧ = lookup ρ _
; ⟦t⟧ = lookup ρ′ (suc _)
; ↘⟦s⟧ = ⟦[]⟧ ⟦p⟧ (⟦v⟧ _)
; ↘⟦t⟧ = ⟦v⟧ _
; sTt = e≈e′ (there T∈Γ)
}
∘-I′ : Ψ ⊨s σ ∶ Ψ′ →
Ψ ⊨s σ ∘ I ≈ σ ∶ Ψ′
∘-I′ ⊨σ ρ ρ′ ρ≈ρ′ = record
{ ⟦σ⟧ = ⟦σ⟧
; ⟦τ⟧ = ⟦τ⟧
; ↘⟦σ⟧ = ⟦∘⟧ ⟦I⟧ ↘⟦σ⟧
; ↘⟦τ⟧ = ↘⟦τ⟧
; σΨτ = σΨτ
}
where open Intps (⊨σ ρ ρ′ ρ≈ρ′)
I-∘′ : Ψ ⊨s σ ∶ Ψ′ →
Ψ ⊨s I ∘ σ ≈ σ ∶ Ψ′
I-∘′ ⊨σ ρ ρ′ ρ≈ρ′ = record
{ ⟦σ⟧ = ⟦σ⟧
; ⟦τ⟧ = ⟦τ⟧
; ↘⟦σ⟧ = ⟦∘⟧ ↘⟦σ⟧ ⟦I⟧
; ↘⟦τ⟧ = ↘⟦τ⟧
; σΨτ = σΨτ
}
where open Intps (⊨σ ρ ρ′ ρ≈ρ′)
∘-assoc′ : Ψ ⊨s σ ∶ Ψ′ →
Ψ′ ⊨s σ′ ∶ Ψ″ →
Ψ″ ⊨s σ″ ∶ Ψ‴ →
Ψ ⊨s σ″ ∘ σ′ ∘ σ ≈ σ″ ∘ (σ′ ∘ σ) ∶ Ψ‴
∘-assoc′ ⊨σ ⊨σ′ ⊨σ″ ρ ρ′ ρ≈ρ′ = record
{ ⟦σ⟧ = σ″.⟦σ⟧
; ⟦τ⟧ = σ″.⟦τ⟧
; ↘⟦σ⟧ = ⟦∘⟧ σ.↘⟦σ⟧ (⟦∘⟧ σ′.↘⟦σ⟧ σ″.↘⟦σ⟧)
; ↘⟦τ⟧ = ⟦∘⟧ (⟦∘⟧ σ.↘⟦τ⟧ σ′.↘⟦τ⟧) σ″.↘⟦τ⟧
; σΨτ = σ″.σΨτ
}
where module σ = Intps (⊨σ ρ ρ′ ρ≈ρ′)
module σ′ = Intps (⊨σ′ σ.⟦σ⟧ σ.⟦τ⟧ σ.σΨτ)
module σ″ = Intps (⊨σ″ σ′.⟦σ⟧ σ′.⟦τ⟧ σ′.σΨτ)
,-∘′ : Ψ′ ⊨s σ ∶ Γ ∷ Γs →
Ψ′ ⊨ t ∶ T →
Ψ ⊨s δ ∶ Ψ′ →
Ψ ⊨s (σ , t) ∘ δ ≈ (σ ∘ δ) , t [ δ ] ∶ (T ∷ Γ) ∷ Γs
,-∘′ {_} {σ} {_} {_} {t} {_} {_} {δ} ⊨σ ⊨t ⊨δ ρ ρ′ ρ≈ρ′ = record
{ ⟦σ⟧ = σ.⟦σ⟧ ↦ ⟦s⟧
; ⟦τ⟧ = σ.⟦τ⟧ ↦ ⟦t⟧
; ↘⟦σ⟧ = ⟦∘⟧ δ.↘⟦σ⟧ (⟦,⟧ σ.↘⟦σ⟧ ↘⟦s⟧)
; ↘⟦τ⟧ = ⟦,⟧ (⟦∘⟧ δ.↘⟦τ⟧ σ.↘⟦τ⟧) (⟦[]⟧ δ.↘⟦τ⟧ ↘⟦t⟧)
; σΨτ = ctx-↦ σ.⟦σ⟧ σ.⟦τ⟧ σ.σΨτ sTt
}
where module δ = Intps (⊨δ ρ ρ′ ρ≈ρ′)
module σ = Intps (⊨σ δ.⟦σ⟧ δ.⟦τ⟧ δ.σΨτ)
open Intp (⊨t δ.⟦σ⟧ δ.⟦τ⟧ δ.σΨτ)
;-∘′ : ∀ {n} Γs →
Ψ ⊨s σ ∶ Ψ′ →
Ψ″ ⊨s δ ∶ Γs ++⁺ Ψ →
len Γs ≡ n →
Ψ″ ⊨s σ ; n ∘ δ ≈ (σ ∘ Tr δ n) ; O δ n ∶ [] ∷⁺ Ψ′
;-∘′ {_} {σ} {Ψ′} {_} {δ} {n} Γs ⊨σ ⊨δ refl ρ ρ′ ρ≈ρ′ = record
{ ⟦σ⟧ = ext σ.⟦σ⟧ (O δ.⟦σ⟧ n)
; ⟦τ⟧ = ext σ.⟦τ⟧ (O δ.⟦τ⟧ n)
; ↘⟦σ⟧ = ⟦∘⟧ δ.↘⟦σ⟧ (⟦;⟧ σ.↘⟦σ⟧)
; ↘⟦τ⟧ = subst (λ m → ⟦ (σ ∘ Tr δ n) ; O δ n ⟧s ρ′ ↘ ext σ.⟦τ⟧ m)
(O-⟦⟧s n δ.↘⟦τ⟧)
(⟦;⟧ (⟦∘⟧ (Tr-⟦⟧s n δ.↘⟦τ⟧) σ.↘⟦τ⟧))
; σΨτ = subst (λ m → ext σ.⟦σ⟧ (O δ.⟦σ⟧ n) ≈ ext σ.⟦τ⟧ m ∈ ⟦ [] ∷⁺ Ψ′ ⟧Ψ)
(⟦⟧Ψ-O′ δ.⟦σ⟧ δ.⟦τ⟧ Γs δ.σΨτ)
(ctx-ext σ.⟦σ⟧ σ.⟦τ⟧ (O δ.⟦σ⟧ n) σ.σΨτ)
}
where module δ = Intps (⊨δ ρ ρ′ ρ≈ρ′)
module σ = Intps (⊨σ (Tr δ.⟦σ⟧ n) (Tr δ.⟦τ⟧ n) (⟦⟧Ψ-Tr′ δ.⟦σ⟧ δ.⟦τ⟧ Γs δ.σΨτ))
p-,′ : Ψ ⊨s σ ∶ Γ ∷ Γs →
Ψ ⊨ t ∶ T →
Ψ ⊨s p ∘ (σ , t) ≈ σ ∶ Γ ∷ Γs
p-,′ {_} {σ} {_} {_} {t} ⊨σ ⊨t ρ ρ′ ρ≈ρ′ = record
{ ⟦σ⟧ = drop (⟦σ⟧ ↦ ⟦s⟧)
; ⟦τ⟧ = ⟦τ⟧
; ↘⟦σ⟧ = ⟦∘⟧ (⟦,⟧ ↘⟦σ⟧ ↘⟦s⟧) ⟦p⟧
; ↘⟦τ⟧ = ↘⟦τ⟧
; σΨτ = subst (_≈ ⟦τ⟧ ∈ ⟦ _ ∷ _ ⟧Ψ) (drop-↦ ⟦σ⟧ ⟦s⟧) σΨτ
}
where open Intps (⊨σ ρ ρ′ ρ≈ρ′)
open Intp (⊨t ρ ρ′ ρ≈ρ′)
,-ext′ : Ψ ⊨s σ ∶ (T ∷ Γ) ∷ Γs →
Ψ ⊨s σ ≈ (p ∘ σ) , v 0 [ σ ] ∶ (T ∷ Γ) ∷ Γs
,-ext′ {_} {σ} ⊨σ ρ ρ′ ρ≈ρ′ = record
{ ⟦σ⟧ = ⟦σ⟧
; ⟦τ⟧ = drop ⟦τ⟧ ↦ lookup ⟦τ⟧ 0
; ↘⟦σ⟧ = ↘⟦σ⟧
; ↘⟦τ⟧ = ⟦,⟧ (⟦∘⟧ ↘⟦τ⟧ ⟦p⟧) (⟦[]⟧ ↘⟦τ⟧ (⟦v⟧ _))
; σΨτ = subst (⟦σ⟧ ≈_∈ ⟦ (_ ∷ _) ∷ _ ⟧Ψ) (sym (↦-drop ⟦τ⟧)) σΨτ
}
where open Intps (⊨σ ρ ρ′ ρ≈ρ′)
;-ext′ : Ψ ⊨s σ ∶ [] ∷ Γ ∷ Γs →
Ψ ⊨s σ ≈ Tr σ 1 ; O σ 1 ∶ [] ∷ Γ ∷ Γs
;-ext′ {_} {σ} ⊨σ ρ ρ′ ρ≈ρ′ = record
{ ⟦σ⟧ = ⟦σ⟧
; ⟦τ⟧ = ext (Tr ⟦τ⟧ 1) (proj₁ (⟦τ⟧ 0))
; ↘⟦σ⟧ = ↘⟦σ⟧
; ↘⟦τ⟧ = subst (λ n → ⟦ Tr σ 1 ; O σ 1 ⟧s ρ′ ↘ ext (Tr ⟦τ⟧ 1) n)
(trans (O-⟦⟧s 1 ↘⟦τ⟧) (+-identityʳ _))
(⟦;⟧ (Tr-⟦⟧s 1 ↘⟦τ⟧))
; σΨτ = let (_ , rest) = σΨτ
in (λ { () }) , rest
}
where open Intps (⊨σ ρ ρ′ ρ≈ρ′)
mutual
fund-⊢ : Ψ ⊢ t ∶ T → Ψ ⊨ t ∶ T
fund-⊢ (vlookup T∈Γ) = v-≈′ T∈Γ
fund-⊢ (⟶-I t∶T) = Λ-cong′ (fund-⊢ t∶T)
fund-⊢ (⟶-E t∶F s∶S) = $-cong′ (fund-⊢ t∶F) (fund-⊢ s∶S)
fund-⊢ (□-I t∶T) = box-cong′ (fund-⊢ t∶T)
fund-⊢ (□-E Γs t∶T eq) = unbox-cong′ Γs (fund-⊢ t∶T) eq
fund-⊢ (t[σ] t∶T σ∶Ψ′) = []-cong′ (fund-⊢ t∶T) (fund-⊢s σ∶Ψ′)
fund-⊢s : Ψ ⊢s σ ∶ Ψ′ → Ψ ⊨s σ ∶ Ψ′
fund-⊢s S-I = I-≈′
fund-⊢s S-p = p-≈′
fund-⊢s (S-, σ∶Ψ′ t∶T) = ,-cong′ (fund-⊢s σ∶Ψ′) (fund-⊢ t∶T)
fund-⊢s (S-; Γs σ∶Ψ′ eq) = ;-cong′ Γs (fund-⊢s σ∶Ψ′) eq
fund-⊢s (S-∘ σ∶Ψ′ δ∶Ψ″) = ∘-cong′ (fund-⊢s σ∶Ψ′) (fund-⊢s δ∶Ψ″)
mutual
fund-≈ : Ψ ⊢ t ≈ t′ ∶ T → Ψ ⊨ t ≈ t′ ∶ T
fund-≈ (v-≈ T∈Γ) = v-≈′ T∈Γ
fund-≈ (Λ-cong t≈t′) = Λ-cong′ (fund-≈ t≈t′)
fund-≈ ($-cong t≈t′ s≈s′) = $-cong′ (fund-≈ t≈t′) (fund-≈ s≈s′)
fund-≈ (box-cong t≈t′) = box-cong′ (fund-≈ t≈t′)
fund-≈ (unbox-cong Γs t≈t′ eq) = unbox-cong′ Γs (fund-≈ t≈t′) eq
fund-≈ ([]-cong t≈t′ σ≈σ′) = []-cong′ (fund-≈ t≈t′) (fund-≈s σ≈σ′)
fund-≈ (Λ-[] σ∶Ψ′ t∶T) = Λ-[]′ (fund-⊢s σ∶Ψ′) (fund-⊢ t∶T)
fund-≈ ($-[] σ∶Ψ′ t∶F s∶S) = $-[]′ (fund-⊢s σ∶Ψ′) (fund-⊢ t∶F) (fund-⊢ s∶S)
fund-≈ (box-[] σ∶Ψ′ t∶T) = box-[]′ (fund-⊢s σ∶Ψ′) (fund-⊢ t∶T)
fund-≈ (unbox-[] Γs σ∶Ψ′ t∶T eq) = unbox-[]′ Γs (fund-⊢s σ∶Ψ′) (fund-⊢ t∶T) eq
fund-≈ (⟶-β t∶T s∶S) = ⟶-β′ (fund-⊢ t∶T) (fund-⊢ s∶S)
fund-≈ (□-β Γs t∶T eq) = □-β′ Γs (fund-⊢ t∶T) eq
fund-≈ (⟶-η t∶F) = ⟶-η′ (fund-⊢ t∶F)
fund-≈ (□-η t∶T) = □-η′ (fund-⊢ t∶T)
fund-≈ ([I] t∶T) = [I]′ (fund-⊢ t∶T)
fund-≈ ([∘] σ∶Ψ′ δ∶Ψ″ t∶T) = [∘]′ (fund-⊢s σ∶Ψ′) (fund-⊢s δ∶Ψ″) (fund-⊢ t∶T)
fund-≈ (v-ze σ∶Ψ′ t∶T) = v-ze′ (fund-⊢s σ∶Ψ′) (fund-⊢ t∶T)
fund-≈ (v-su σ∶Ψ′ t∶T T∈Γ) = v-su′ (fund-⊢s σ∶Ψ′) (fund-⊢ t∶T) T∈Γ
fund-≈ ([p] T∈Γ) = [p]′ T∈Γ
fund-≈ (≈-sym t≈t′) = ≈-sym′ (fund-≈ t≈t′)
fund-≈ (≈-trans t≈t′ t′≈t″) = ≈-trans′ (fund-≈ t≈t′) (fund-≈ t′≈t″)
fund-≈s : Ψ ⊢s σ ≈ σ′ ∶ Ψ′ → Ψ ⊨s σ ≈ σ′ ∶ Ψ′
fund-≈s I-≈ = I-≈′
fund-≈s p-≈ = p-≈′
fund-≈s (,-cong σ≈σ′ t≈t′) = ,-cong′ (fund-≈s σ≈σ′) (fund-≈ t≈t′)
fund-≈s (;-cong Γs σ≈σ′ eq) = ;-cong′ Γs (fund-≈s σ≈σ′) eq
fund-≈s (∘-cong σ≈σ′ δ≈δ′) = ∘-cong′ (fund-≈s σ≈σ′) (fund-≈s δ≈δ′)
fund-≈s (∘-I σ∶Ψ′) = ∘-I′ (fund-⊢s σ∶Ψ′)
fund-≈s (I-∘ σ∶Ψ′) = I-∘′ (fund-⊢s σ∶Ψ′)
fund-≈s (∘-assoc σ σ₁ σ₂) = ∘-assoc′ (fund-⊢s σ) (fund-⊢s σ₁) (fund-⊢s σ₂)
fund-≈s (,-∘ σ∶Ψ′ t∶T δ∶Ψ″) = ,-∘′ (fund-⊢s σ∶Ψ′) (fund-⊢ t∶T) (fund-⊢s δ∶Ψ″)
fund-≈s (;-∘ Γs σ∶Ψ′ δ∶Ψ″ eq) = ;-∘′ Γs (fund-⊢s σ∶Ψ′) (fund-⊢s δ∶Ψ″) eq
fund-≈s (p-, σ∶Ψ′ t∶T) = p-,′ (fund-⊢s σ∶Ψ′) (fund-⊢ t∶T)
fund-≈s (,-ext σ∶Ψ) = ,-ext′ (fund-⊢s σ∶Ψ)
fund-≈s (;-ext σ∶Ψ) = ;-ext′ (fund-⊢s σ∶Ψ)
fund-≈s (s-≈-sym σ≈σ′) = s-≈-sym′ (fund-≈s σ≈σ′)
fund-≈s (s-≈-trans σ≈σ′ σ′≈σ″) = s-≈-trans′ (fund-≈s σ≈σ′) (fund-≈s σ′≈σ″)
Initial-refl : ∀ Γ → InitialEnv Γ ≈ InitialEnv Γ ∈ ⟦ Γ ⟧Γ
Initial-refl (T ∷ Γ) here = Bot⊆⟦⟧ T (l∈Bot (L.length Γ))
Initial-refl .(_ ∷ _) (there T∈Γ) = Initial-refl _ T∈Γ
Initials-refl : ∀ Γs → InitialEnvs Γs ≈ InitialEnvs Γs ∈ ⟦ Γs ⟧Γs
Initials-refl [] = _
Initials-refl (Γ ∷ Γs) = Initial-refl Γ , refl , Initials-refl Γs
record Completeness n s ρ t ρ′ T : Set where
field
nf : Nf
nbs : Nbe n ρ s T nf
nbt : Nbe n ρ′ t T nf
⊨-conseq : Ψ ⊨ s ≈ t ∶ T → ∀ ns ρ ρ′ → ρ ≈ ρ′ ∈ ⟦ Ψ ⟧Ψ → Completeness ns s ρ t ρ′ T
⊨-conseq {T = T} s≈t ns ρ ρ′ ρ≈ρ′ =
let (w , ↘w , ↘w′) = TTop T sTt ns vone in
record
{ nf = w
; nbs = record
{ ⟦t⟧ = ⟦s⟧
; ↘⟦t⟧ = ↘⟦s⟧
; ↓⟦t⟧ = subst (λ a → Rf ns - ↓ T a ↘ w) (ap-vone _) ↘w
}
; nbt = record
{ ⟦t⟧ = ⟦t⟧
; ↘⟦t⟧ = ↘⟦t⟧
; ↓⟦t⟧ = subst (λ a → Rf ns - ↓ T a ↘ w) (ap-vone _) ↘w′
}
}
where open Intp (s≈t ρ ρ′ ρ≈ρ′)
TTop : ∀ T → ⟦ T ⟧T a b → Top (↓ T a) (↓ T b)
TTop T aTb = ⟦⟧⊆Top T aTb
completeness : Γ ∷ Γs ⊢ s ≈ t ∶ T → Completeness (map len (Γ ∷ Γs)) s (InitialEnvs (Γ ∷ Γs)) t (InitialEnvs (Γ ∷ Γs)) T
completeness {Γ} {Γs} s≈t = ⊨-conseq (fund-≈ s≈t) _ _ _ (Initials-refl (Γ ∷ Γs))